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1 Midterm 1
1.1 DT vs. CT signals
ECE 210 dealt primarily with CT (continuous time) signals. ECE 310 deals with DT
(discrete time) signals.
Signals:
• Continuous-domain (analog) → 𝑥(𝑡) for (𝑡 ∈ ℝ)
• Discrete-domain (digital) → 𝑥[𝑛] for (𝑛 ∈ ℤ)

Notation is technically important, 𝑥[𝑛] refers to a singular sample at n. A signal is
represented with {𝑥[𝑛]}𝑛 for 𝑛 ∈ ℤ , and a system can be represented as {𝑦[𝑛]} =
𝑆{𝑥[𝑛]} for 𝑛 ∈ ℤ. However, I really cannot be bothered to do this, and most problems
don’t either.

1.2 LTI/LSI Systems
Linear Time Invariant or Linear Shift Invariant (same thing).
• Linear: Superposition of inputs has a corresponding superposition of outputs. Stuff

like scaling is preserved.
• Time/Shift Invariant: Time shift in the input results in an equal time shift in the

output.

Most of the fancy theorems in this class rely on systems being LTI.

Determining linearity is relatively straightforward (IMO) but time-invariance isn’t
(again, IMO). But generally the approach seems to be plugging in a time shift 𝑛𝑜 into
the input. Then apply the same time shift in the output, and see if the two expressions
match.

Trivial Example: 𝑦[𝑛] = 𝑥[𝑛2]

𝑥[𝑛] transforms 𝑥[𝑛] → 𝑥[𝑛 − 𝑛𝑜]. Thus, 𝑦[𝑛] = 𝑥[𝑛2 − 2𝑛𝑛𝑜 + 𝑛2
𝑜]. Applying the same

time shift to the output, we get 𝑦[𝑛 − 𝑛𝑜] = 𝑥[𝑛2 − 𝑛𝑜]. These are not the same
expression, and thus this system is time-variant.

1.3 The Delta Function
Similar to the delta function from ECE 210. Except its not an infinite spike.

𝛿[𝑛] ≔ {1 if 𝑛=0
0 otherwise

We can represent a DT signal as a superposition of scaled and shifted delta functions.
For example:
• 𝑥[𝑛] = ∑𝑘∈ℤ 𝑥[𝑘]𝛿[𝑛 − 𝑘]
• 𝑦[𝑛] = ∑𝑘∈ℤ 𝑥[𝑘]𝑆{𝛿[𝑛 − 𝑘]}
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1.4 Convolution
Thankfully we don’t have to do 3D tiled convolution kernels for this class.

In ECE 210, we use convolution to “apply” an impulse response to an input CT signal.
In this class its more or less the same, except its with DT signals.

Discrete convolution is defined as the following:
𝑦[𝑛] = (𝑥 ∗ ℎ)[𝑛] = ∑𝑘∈ℤ 𝑥[𝑘]ℎ[𝑛 − 𝑘] = ∑𝑘∈ℤ ℎ[𝑘]𝑥[𝑛 − 𝑘]

Some useful properties of convolution:
• start point = (start of 𝑥[𝑛])(start of ℎ[𝑛])
• end point = (end of 𝑥[𝑛])(end of ℎ[𝑛])
• start index = (start index of 𝑥[𝑛]) + (start index of ℎ[𝑛])
• end index = (end index of 𝑥[𝑛]) + (end index of ℎ[𝑛])
• Convolution is associative, distributive, commutative (and linear)

1.5 LCCDEs
Stands for Linear Constant Coefficient Difference Equations, and is a popular way to
represent LTI/LSI systems. There are two ways of solving LCCDE’s: guess-and-check
(painful) and Z-transforms (not painful).

General form of LCCDEs:

𝑦[𝑛] = ∑
𝐾

𝑖=1
𝑏𝑖𝑦[𝑛 − 𝑖] + ∑

𝑀

𝑗=0
𝑐𝑖𝑥[𝑛 − 𝑗]

for {𝐾, 𝑀 ∈ ℤ | 0 ≤ 𝐾 < ∞ and 1 ≤ 𝑀 < ∞}
(1)

I may be a little too ECE 210-pilled, but I guess you can think of the left summation as
the Zero-Input terms, and the right summation as the Zero-State terms.

1.5.1 FIR/IIR Systems
FIR (Finite Impulse Response) systems occur when you have LCCDEs with 𝐾 = 0 (no
feedback terms). IIR (Infinite Impulse Response) systems have 𝐾 > 0.

1.6 Z-Transforms
Motivation for Z-Transforms: Can we find a class of signals which do not change shape
once passed through an LTI/LSI system?

The Z-Transform 𝑋(𝑧) of a DT signal 𝑥[𝑛] is defined as:

𝑋(𝑧) = ∑
∞

𝑛=−∞
𝑥[𝑛]𝑧−𝑛 where 𝑧 ∈ ℂ (2)
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The ROC (region of convergence) is the range of values in the z-domain in which the Z-
transform converge. Any particular Z-transform may have multiple ROCs
which correspond to different inverse Z-transforms.

A Few Reoccuring Z-Transforms:
• 𝛼𝑛𝑢[𝑛] → 1

1−𝛼𝑧−1  (Right-handed signal, ROC: |𝑧| > 𝛼)
• −𝛼𝑛𝑢[−𝑛 − 1] → 1

1−𝛼𝑧−1  (Left-handed signal, ROC: |𝑧| < 𝛼)
• 𝛿[𝑛 − 𝑚] → 𝑧−𝑚

A Few Reoccuring Z-Transform properties
• Linearity
• Time Shifting: 𝑥[𝑛 − 𝑘] → 𝑧−𝑘𝑋(𝑧)
• Convolution: 𝑥1[𝑛] ∗ 𝑥2[𝑛] → 𝑋1(𝑧)𝑋2(𝑧). Note: this is a reoccuring property of FTs

and LTs as well. Pretty sure thats why a lot of convolution algo’s use FFT so that
convolution becomes an 𝑂(𝑛 log(𝑛)) operation

Due to the convolution property, we can express LTI systems in the Z-domain as
follows:

𝑦[𝑛] = (𝑥 ∗ ℎ)[𝑛] → 𝑌 (𝑧) = 𝑋(𝑧)𝐻(𝑧) (3)

Alternatively, we can write 𝐻(𝑧) = 𝑌 (𝑧)
𝑋(𝑧)  and inverse Z-transform to recover the impulse

response ℎ[𝑛]. This is probably the best way of determining the impulse response for
LCCDEs (for now, at least).

Inverse Z-transforming often devolves into a lot of partial fraction
decomposition, so review that.

1.7 Causality
Pretty much the same as introduced in ECE 210.

Output depends solely on current/past inputs → Causal
Output depends on future inputs → Not Causal

An anticausal system relies solely on future inputs.

A system is causal if impulse response ℎ[𝑛] = 0 for 𝑛 < 0.

Both causal and non-causal systems have their merits. Causal systems are used often in
real-time systems. Example application of non-causal systems would be in image post-
processing, and (generally) signal processing on data which has been stored in some
memory unit.
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1.8 BIBO Stability
A system is BIBO (Bounded-Input Bounded-Output) stable if for some {𝑦[𝑛]}𝑛 =
𝑆{𝑥[𝑛]}𝑛, whenever |𝑥[𝑛]| ≤ 𝐵in < ∞, it holds that |𝑦[𝑛]| ≤ 𝐵out < ∞.

Because of convolution properties, a finite length impulse response is indicative of a
BIBO stable system.

What if ℎ[𝑛] is infinite-length? Then it must converge.
𝑆{ℎ[𝑛]} is BIBO stable iff ∑∞

𝑘=−∞|ℎ[𝑛]| < ∞.

1.8.1 Z-domain and Stability
In general, a system with transfer function 𝐻(𝑧) and associated ROC𝐻 is stable if it
contains |𝑧| = 1 (the unit circle).

With problems with multiple terms within the transfer function, the ROC is at least the
intersection of all terms. For problems that ask to find a bounded input which will
result in a bounded output for a non-bounded system, use pole-zero cancellation. For
problems that ask to find a bounded input which results in an unbounded output, try
to make divergent terms non-zero (delta function does the trick usually).

An LTI system is marginally stable if its ROC is open at the unit circle |𝑧| = 1.

Define: 𝑥[𝑛] = 𝑎𝑛𝑢[𝑛] and ℎ[𝑛] = 𝑏𝑛𝑢[𝑛] where |𝑎| = |𝑏| = 1. We can thus expand 𝑎 =
𝑒𝑗𝜑 and 𝑏 = 𝑒𝑗𝜃, respectively. The system output 𝑦[𝑛] = ∑∞

𝑘=−∞ 𝑥[𝑛 − 𝑘]ℎ[𝑘] =
∑∞

𝑘=−∞ 𝑒𝑗𝜑(𝑛−𝑘)𝑒𝑗𝜃(𝑘)𝑢[𝑛 − 𝑘]𝑢[𝑘]. We factor out exp(𝑗𝜑𝑛) and simplify the summation
bounds to rewrite this as:

𝑦[𝑛] = 𝑒𝑗𝜑𝑛 ∑𝑛
𝑘=0 𝑒𝑗𝑘(𝜃−𝜑) = 𝑒𝑗𝜑𝑛(1−𝑒𝑗(𝜃−𝜑)(𝑛+1)

1−𝑒𝑗(𝜃−𝜑) )𝑢[𝑛].

When 𝜑 = 𝜃, the indetermant expression can be written as:

𝑦[𝑛] = 𝑒𝑗𝜑𝑛 ∑𝑛
𝑘=0(1) = (𝑛 + 1)𝑒𝑗𝜑𝑛𝑢[𝑛].

We can see this expression is unbounded due to the (𝑛 + 1) term.

When 𝜑 ≠ 𝜃, y[n] oscillates, but remains bounded.

Thus, in a marginally stable system, only inputs that match at least one unit
circle pole of the system will produce unbounded outputs. Otherwise, it will
be bounded.

2 Midterm 2.
Will update this when midterm 2 rolls around :D

3 Midterm 3
Will update this when midterm 3 rolls around :D
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