
ECE 408
Fall 2025

Review Notes for ECE 408 (Applied Parallel Programming)

This is in no way comprehensive.

Aniketh Tarikonda (aniketh8@illinois.edu)

Contents
1 Midterm 1 . 1

1.1 Why do GPUs exist? . 1
1.1.1 End of Dennard Scaling . 1
1.1.2 Amdahl’s Law . 1

1.2 Basic Organization of CUDA . 2
1.3 High-Level Architecture of Modern GPUs . 2

1.3.1 Block Scheduling . 3
1.3.2 Barrier Synchronization . 3
1.3.3 Warps and SIMD Hardware . 3
1.3.4 Control/Branch Divergence . 4
1.3.5 CUDA Memory Model . 4

1.4 Matrix Multiplication - Labs 2 & 3 . 4
1.4.1 Naive Implementation . 4
1.4.2 Tiled Matrix Multiplication . 5

1.5 GPU Memory Systems . 5
1.5.1 Memory Coalescing . 6
1.5.2 Caches . 6

1.6 Miscellaneous Optimization Strategies . 7
1.7 Convolution (Lab 4) . 7

2 Transformers . 8
2.1 High-Level Overview of Transformers . 8
2.2 Attention Mechanism . 9
2.3 Feed Forward Network (FFN) . 10

2.3.1 GeLU Activation . 10
2.3.2 Residual Correction . 10
2.3.3 Layer Normalization . 10

3 Midterm 2 . 10

1 Midterm 1
1.1 Why do GPUs exist?
Moores Law - observation that number of transistors on ICs double every 18-24 months.
Dennard Scaling - As feature sizes decrease, energy density remains constant and clock
speeds increase.
• 𝑃 ∝ 𝐶𝑓𝑉 2 and capacitance C is proportional to area
• Exponential increase in clock speed
• Increased transistor density meant memory went from being expensive to effectively

infinite

1.1.1 End of Dennard Scaling
Dennard Scaling ended around 2005/6, clock speeds stagnated, and we needed different
methods to achieve performance expectations.
• ILP (Instruction Level Parallelism)
• Manycore Systems
• Specialization, including GPUs

CPUs vs. GPUs
• CPUs are latency-oriented (large ALUs, FUs, large caches, branch prediction, data

bypassing, out-of-order execution, multithreading to hide short latency)
• GPUs are throughput-oriented with many small ALUs, small caches, simple control

logic, and massive multithreading capabilities
• CPUs wins perf-wise for sequential, latency-heavy code. GPUs win perf-wise for

parallelizable, throughput-focused code.

CUDA - Computing Unified Device Architecture

Threads - a PC, IR, and context (registers & memory)
• Many threads → context switching becomes inconvienient
• we’d like to avoid communication between threads as much as possible

1.1.2 Amdahl’s Law

𝑡 ≔ sequential execution time
𝑝 ≔ % parallelizable

𝑠 ≔ speedup on the parallelizable part

𝑡parallel = (1 − 𝑝 + 𝑝
𝑠
) × 𝑡

(1)

Effectively, the maximum speedup (𝑡sequential
𝑡parallel

) is limited by the fraction of execution that is
parallelizable.

1

1.2 Basic Organization of CUDA
CUDA integrates the device (GPU) and host (CPU) into one application. The host
handles serial/moderately parallel tasks, whereas the device handles the highly parallel
sections of the program.

CUDA kernels are executed as a grid of threads
• All threads in a grid run the same kernel (SIMT)
• Each thread has a unique index that can be used to index into memory/make control

decisions

In CUDA, threads are organized within blocks
• Threads within a block can cooperate via shared memory, barrier synchronization,

and atomic operations

Threads within a block are 3D, blocks within a grid are also 3D.

gridDim.x // gives you # of blocks in grid (in x axis)
blockDim.x // gives you # of threads within a block (x axis)
blockIdx.x // gives you the index of the block within the grid (x axis)
threadIdx.x // gives you the index of the thread within the block (x axis)

Host and Device have their own separate memories with some interconnect between
them (PCIe, iirc). Thus, for most programs you have to:
1. Allocate GPU memory
2. Copy data from CPU to GPU memory
3. Perform computation using GPU memory
4. Copy data from GPU to CPU memory
5. Deallocate GPU memory

The __global__ keyword defines a kernel (callable from host/device, but executes on
device). There also exists __host__ and __device__ keywords that are callable/executes
from host and device, respectively.
• __global__ must return void, but the other two can return non-void

Example: __global__ vecAdd(float* A, float* B, float* C, int n)
To launch this kernel, you can do the following:
vecAdd<<<dimGrid, dimBlock>>>(A_d, B_d, C_d, n); where dimGrid is the number of
blocks per grid, and dimBlock is the number of threads per block.

There exists a dim3 type in CUDA which makes multidimensional grids/blocks easier to
launch.

Blocks can be executed in any order.

1.3 High-Level Architecture of Modern GPUs
• Organized into an array of highly threaded streaming multiprocessors (SM)

2

• Each SM has multiple streaming processors (CUDA cores), which share control logic
and memory resources

• Memory Hierarchy - the shared global memory is DRAM (slow), local memory for
each SM is SRAM (fast)

1.3.1 Block Scheduling
1. Kernel Called
2. CUDA runtime system launches the grid
3. Threads are assigned to SMs on a block-by-block basis. All threads in a block are

assigned to the same SM. Usually multiple blocks per SM
4. Limited number of SMs - the runtime system keeps a list of blocks that need to be

executed, and when a block finishes execution, a new block is assigned to that SM

1.3.2 Barrier Synchronization
CUDA allows threads in the same block to coordinate activity using the barrier
synchronization method __syncthreads()

__syncthreads() holds a particular thread at the program location of the call (PC) until
every thread in the same block reaches that location. All threads need to be able to
reach this program location, and execute __syncthreads()

CUDA runtime system ensures all threads have the (memory) resources to arrive at the
barrier.

Threads in different blocks can’t perform barrier synchronization, but this is good
because it allows the CUDA runtime system to execute blocks in any order relative to
each other (thus, programs can scale easily).

1.3.3 Warps and SIMD Hardware
As a programmer, one should assume that threads in a block can execute in any order
wrt. one another (hence why barrier synchronization is so important).

Once a block is assigned to a SM, it is divided into 32-thread units called warps.
• Warps are the unit of thread scheduling in SMs
• Blocks are partitioned into warps on the basis of thread indices
• If a block doesn’t have a clean multiple of 32 threads, the last warp is padded with

inactive threads
• Multidimensional blocks are projected onto a linearized row-major layout before

being partitioned into warps

SM implements zero-overhead warp scheduling
• Warps are only eligible for execution once all of its operands are ready

Von Neumann Model - A basic computer Architecture
• data and programs are stored in the same memory unit

3

• control unit (which has PC, IR), processing unit (ALU, Register File), and I/O

Control units in modern processors are very complex, including fancy fetch logic,
separate instruction/data caches, etc. SMs in GPUs are designed to execute all threads
in a warp using SIMD (Single Instruction, Multiple Device)
• One instruction is fetched and executed for all threads
• Relatively simple control HW compared to CPUs, and its shared across multiple

execution units
• Shared control units in SIMD designs reult in significantly less power/area costs

1.3.4 Control/Branch Divergence
Control Divergence - different threads within a warp taking different branches. This is a
disadvantage of SIMD designs.

When faced with control divergence, GPUs use predicated execution, where they
sequentially execute both branches.

We can resolve control divergence issues by making branch granularity a multiple of
warp size, so that all threads within a warp share control flow.

1.3.5 CUDA Memory Model
Memory hierarchy once again: Registers (SRAM) are fast (∼1 cycle), but few. Main
memory is slow (∼100s of cycles), but huge (GBs or more)

Each Thread can:
• R/W per-thread registers (∼1 cycle)
• R/W per-block shared memory (∼5 cycles)
• R/W per-grid global memory (∼500 cycles, but there are L2/L1 caches which can

reduce this)
• Read-only per-grid constant memory (∼5 cycles with caching)

1.4 Matrix Multiplication - Labs 2 & 3

1.4.1 Naive Implementation
Assign one thread to each element in the output matrix, read from global memory for
each value in the output matrix.

This approach sucks because the global memory bandwidth cannot supply enough data
to keep all of the SMs busy.

Let’s assume we have a GPU which has 1000 GFLOP/s of compute power, and 150
GB/s memory bandwidth. In the naive implementation, each time we write into the
output matrix, we perform two FP operations (multiply-add). Furthermore, every time
we do these two operations, we have to read 8B of memory from global memory (float is
4B). Thus, its 4B/FLOP.

4

(150 GB/s)/(4B/FLOP) = 37.5 GFLOP/s, which is significantly less than the
theoretical maximum of 1000 GFLOP/s

1.4.2 Tiled Matrix Multiplication
A better approach at matrix multiplication, which uses shared memory to avoid
unnecessary global memory reads.

Keep in mind, shared memory has a much lower latency than global memory!

To declare shared memory within a kernel, use the __shared__ modifier
• example: __shared__ float subTileN[TILE_WIDTH][TILE_WIDTH];

High-level Idea:
• Break input matrices into NxN tiles
• Read tile into shared memory
• Each thread can then read this local tile from shared memory
• Repeat until we’ve computed the output matrix

While implementing tiled matmul, we need to use barrier synchronization to ensure that
the shared memory tile has been completely loaded before we procede with
computation. This idea of:
doing some work → waiting for threads to catch up → repeat
is called bulk synchronous execution and dominates HPC applications.

The use of large enough shared memory tiles shifts the bottleneck in Matrix-Matrix
multiplication. ex: Same GPU with 1000 GFLOP/s compute, 150 GB/s memory BW. If
we use 16 × 16 tiles, we reduce global memory accesses by a factor of 16.

Thus, (150 GB/s)/(4B/FLOP) × 16 = 600 GFLOP/s.

If we use 32 × 32 tiles, we get a theoretical 1200 GFLOP/s, at which point memory
bandwidth is no longer the bottleneck.

Shared Memory Limitations
• Implementation Dependent
• 64kB per SM in Maxwell architecture
• Ex: tile width of 16 → 256 threads/block → 2 × 256 × 4B = 2kB of shared memory/

block → upper limit of 32 active blocks
• However, there is a maximum of 2048 threads/SM, which inherently limits number of

blocks to 8.

1.5 GPU Memory Systems
SRAM - dual inverter feedback loop with two NMOS transistors for R/W (6T design)
DRAM - literally a NMOS transistor and capacitor chained together, alongside a BIT
and SELECT line.
• destructive reads, must be rewritten (making it dynamic)

5

• many DRAM cells share a bit line (∼1k)
• DRAM bank - A 2D array of DRAM cells w/ sense amps for higher speed/reading

tiny currents
• Row Address → Row Decoder → DRAM Array → Sense Amps → Column Latches

& MUX
• DRAM never returns one bit, but rather a row burst
• Accessing data in different DRAM bursts is slow, but accessing data within the same

burst is so much faster because of the column latches.

1.5.1 Memory Coalescing
Memory coalescing occurs when threads in the same warp access consecutive memory
locations within the same burst, at which point the hardware coalesces them into one
DRAM transaction.
• Multiple transactions within a warp is called memory divergence
• Without caching, DRAM accesses can be 100s of cycles, so we want to maximize

memory coalescing if possible
• Use of shared memory generally enables coalescing

(Trivial) Example:

int i = blockDim.x * blockIdx.x + threadIdx.x;
z[i] = x[i] + y[i]; // consecutive threads access consecutive memory locations

1.5.2 Caches
Caches are an “array” of cache lines, each of which can hold data from several
consecutive memory locations (spatial locality). When data is requested from global
memory, an entire cache line that includes the specified data is loaded into cache.
• Cache data is technically a copy of the original data, but we need to write-back to

global memory if it has been modified (cache coherence)
• Employs tags and indexes (size dependent on cache associativity) to map data to/

from main memory
• Due to being substantially smaller than main memory, caches need some method to

make room (eviction) for new lines once full. A commonly used eviction policy is
LRU (least-recently used).

Spatial vs. Temporal locality
• Spatial: consecutive memory locations are caches
• Temporal: data accessed repeatedly in a short period of time is caches (may also

move from L2 → L1 cache)

The programmer can control shared memory contents, but only the microarchitecture
controls caching behavior–except for the constant cache.

6

Constant Cache/Constant Memory
• Read-only, does not support WB to global memory
• Declared as global variable, outside of the kernel: __constant__
• Must initialize constant memory from host with cudaMemcpyToSymbol()
• Can only allocate up to 64kB

1.6 Miscellaneous Optimization Strategies
Thread Coarsening
• A thread is assigned multiple units of parallelizable work
• Advantages

‣ reduces overhead incurred by parallelization
‣ ex: redundant memory accesses/computations, control divergence

• Disadvantages
‣ underutilization of resources
‣ more resources per thread which may affect occupancy

Loop Unrolling
• Less loop iterations → fewer branches (long latency without good branch prediction)
• Exposes independent instructions for Instruction Scheduling
• Controlled w/ preprocessing directives (ex: #pragma unroll 4)

Double Buffering
• Eliminates false data dependences by using a different memory buffer for writing

data than the memory buffer containing the data being read

1.7 Convolution (Lab 4)
Idea: Convolution filter (kernel, mask) “slides” across input, we take a dot product
between the two, and the result is ONE entry on the output.

Convolution Filter is unchanged in execution
• Good choice for constant memory (∼5 cycles w/ caching)

Tiled Convolution
• Just like with matrix multiplication, reading input values from global memory each

time will murder your performance.
• There is a lot of potential for reuse with convolution

Three Main Tiling Strategies:
• Strategy 1

‣ Thread block size covers output tile
‣ Include halos into shared memory
‣ Advantages include global memory coalescing, and no branch divergence during

computation

7

‣ Disadvantages include some threads doing >1 load operaiton, resulting in branch
divergence. We also nede slightly more shared memory (trivial)

• Strategy 3
‣ Thread block size covers output tile
‣ Threads read halo values directly from global memory, load only “core” values into

shared memory
‣ Advantages include optimal reuse of shared memory
‣ Disadvantages include branch divergence, and no memory coalescing as you’ll only

have a few threads accessing a few halo values from global memory (although this
is less of an issue on modern GPU’s which large caches)

• Strategy 2
‣ Block size covers input tile (input tile size = output tile size + 2 × mask radius)
‣ Load input tile in one step
‣ Some inactive threads when calculating output

2 Transformers
Note: This section is for the GPT project - this is less relevant for the CNN project.
This also isn’t an AI class per se, but some of these topics are fair game for demo
questions.

2.1 High-Level Overview of Transformers
From a high level, transformers:
• Require supervised training
• Have text inputs translated into numerical representations (tokens)
• These tokens are converted into vectors in some n-dim vector space and during

training, the transformer derives meaning by settling on embeddings in which
direction and semantic meaning are related.

• Number of tokens (vectors) which get passed through the transformer block →
context size

• The output of the transformer would be a probability distribution, which aggregates
in one embedding,
‣ We only use the final embedding to calculate this probability distribution because

it is more efficient to use each vector in the final layer to make predictions on the
subsequent vector.

‣ The final probability distribution is the result of softmax(𝑊𝑈 ⋅ 𝑉𝐹) where 𝑉𝐹 is the
final embedding vector, and 𝑊𝑈 is the unembedding matrix.

‣ 𝑊𝑈 has dimensions correlating to the number of words, and the number of words
in the embedding dimension.

‣ The resulting unnormalized (pre-softmax) parameters of 𝑊𝑈 ⋅ 𝑉𝐹 are called logits.

8

2.2 Attention Mechanism
Begins with text being converted into embeddings (which contain non-contextual
meaning & position in the text)

An attention head encapsulates a particular relationship between data (e.g
“adjectives updating nouns”)
• The transformer architecture uses a multi-head attention mechanism
• Queries within the attention head are vectors, which are determined by 𝑊𝑄 ⋅ 𝐸𝑛,

where 𝐸𝑛 is the embedding. 𝑊𝑄 is determined by training, and encapsulates the
nature of the query (e.g “adjectives preceding nouns”)

• Each embedding is also multiplied by 𝑊𝐾 , called the key matrix, which can be
thought of as the answer to the query.

• We take the dot product of key and query vectors to see our relationships arise from
the text

• Attention should be causal, so we remove the influence of future words by masking
them (set them to negative INF)

At this point we have a matrix of key-query dot products, each product can be thought
of conceptually as a ‘score’ which represents how well one word updates other words.
We then normalize using the softmax function.

Attention(𝑄, 𝐾, 𝑉) = softmax(𝐾𝑇 ⋅ 𝑄
√𝑑𝑘

)𝑉 (2)

Above equation is from “Attention Ss All You Need.” 𝑑𝑘 is an extra factor which is
added to preserve numerical stability.

The V vector(s) are generated by the result of 𝑊𝑉 ⋅ 𝐸𝑛. By multiplying these V vectors
by the weights generated from the previous step, we generate a list of “changes” to the
original embedding vectors–reflecting the relationship(s) of that particular head of
attention.

The transformer architecture is multi-headed, and inherently parallelized.
This allows for the transformer to “learn” many distinct relationships between context
and meaning.

Multiple attention blocks and in-between operations allow the transformer to determine
more nuanced and abstract ideas about a given input. After each self-attention block is
finished, the “updated” embeddings are concatenated, and merged via projection by
another weight matrix 𝑊𝑂.

9

2.3 Feed Forward Network (FFN)
In the transformer architecture, the FFN is placed right after the self-attention
mechanism, and is responsible for introducing non-linearity into the system (key
component of machine learning).

2.3.1 GeLU Activation
Better than ReLU in many aspects because its differentiable at the origin, and
smoother.

GELu(𝑥) = 𝑥 ⋅ Φ(𝑥) (3)

where Φ(𝑥) is the CDF of the Gaussian Distribution. When implemented, we use an
approximation to minimize compute resources.

2.3.2 Residual Correction
• Adds the input to the output of a sub-layer (FFN, self-attention, etc.)
• When implemented in CUDA it reduces down to a vec-add kernel (trivial).
• Helps preserve information & prevents issues with vaninishing gradients during

backprop

2.3.3 Layer Normalization

3 Midterm 2
Will update this later as midterm 2 rolls around :D

10

	Midterm 1
	Why do GPUs exist?
	End of Dennard Scaling
	Amdahl's Law

	Basic Organization of CUDA
	High-Level Architecture of Modern GPUs
	Block Scheduling
	Barrier Synchronization
	Warps and SIMD Hardware
	Control/Branch Divergence
	CUDA Memory Model

	Matrix Multiplication - Labs 2 & 3
	Naive Implementation
	Tiled Matrix Multiplication

	GPU Memory Systems
	Memory Coalescing
	Caches

	Miscellaneous Optimization Strategies
	Convolution (Lab 4)

	Transformers
	High-Level Overview of Transformers
	Attention Mechanism
	Feed Forward Network (FFN)
	GeLU Activation
	Residual Correction
	Layer Normalization

	Midterm 2

