

# ECE 425

Spring 2026

Review Notes for ECE 425 (Intro to VLSI System Design)

These notes aren't fully comprehensive.

## Contents

|       |                                                            |   |
|-------|------------------------------------------------------------|---|
| 1     | Intro .....                                                | 1 |
| 2     | Midterm 1 .....                                            | 2 |
| 2.1   | Intro to MOS Transistors .....                             | 2 |
| 2.2   | Intro to Layout .....                                      | 3 |
| 2.2.1 | Lambda ( $\lambda$ ) Design Rules .....                    | 3 |
| 2.2.2 | Guides for Optimized CMOS Layouts .....                    | 3 |
| 2.2.3 | Common Combinational and Sequential Circuit Elements ..... | 4 |

## 1 Intro

- the semiconductor market is growing, and thus we need VLSI people (literally entirety of lecture 1)
- (Brief) History of Computers:
  - Until the 20th century, we had mechanical computers, abacuses, etc.
  - Vacuum tubes are invented, and can implement boolean logic. First computer is built with vacuum tubes.
  - Vacuum tubes are replaced by transistors
  - Transistors decreased in size, complexity of systems increase
  - ICs invented, can print transistors through lithography. Early LSI era.
  - Technology improves → higher resolution → hundreds of billions of transistors on chips. VLSI era.
- Modern chips use CMOS (complementary nMOS and pMOS networks) to implement digital logic.

**Obligatory Moore's Law and Dennard Scaling Mention** rahh I can never escape it

- Dynamic MOSFET Power Consumption:  $P_{\text{dyn}} = nCV^2f_{\text{clk}}$
- If dimensions of the transistor scale by  $\sim 0.7x$ , area scales by roughly a half.
  - Capacitance ( $C$ ) and Voltage ( $V$ ) scale linearly wrt. dimensions,  $f_{\text{clk}}$  scales by  $\frac{1}{0.7}$
  - $2x$  transistors in the same area
  - End result is that scaling dimensions has *no* effect on  $P_{\text{dyn}}$
  - This observation was the basis for **Dennard Scaling**
- Dennard Scaling ended around 2005/2006
- Economies of Scale, increasing R&D costs for fabrication lead to companies outsourcing fabrication to certain specialized companies (e.g. TSMC, GlobalFoundries, etc.)
  - Rise of EDA industry and global standards for semiconductors (e.g. GDSII)
  - Tools, libraries, PDKs, etc.
- Semiconductors have short market windows, short product life cycles, stiff competition
  - Certain chips need to be low cost, some need to have really good power efficiency
- Modern ASIC/Chip Design Workflow: Design → Architecture → RTL → Gate-Level Netlist → Physical Design (floorplanning, layout, pnr) → fab does their thing, we do Post-Silicon Validation

pagebreak()

## 2 Midterm 1

### 2.1 Intro to MOS Transistors

- We build chips out of silicon because it's a semiconductor, has four valence electrons and can form nice crystal lattices (covalent bonds), has nice thermal properties, and is relatively abundant.
- We can dope it with an element that has 3/5 valence electrons so that we introduce holes and electrons which travel around the lattice (doping)
  - Doping is generally done via diffusion: exposing silicon to superheated phosphorus/boron gas.
- Electrons drifting → Current, improves conductivity
- **n-type semiconductors have extra electrons**
- **p-type semiconductors have extra holes (lack of electrons)**

### PN Junctions

- a P-N junction forms a diode
- Initially the electrons in the n-type fill the holes near the junction, forming a **depletion layer**
- When we put a higher electric potential on the anode (p-type side), current will flow (assuming it's greater than the threshold voltage)
  - This is called **forward biasing**
- Alternatively, we can **reverse bias** the PN junction, which causes the depletion layer to grow and current to stop flowing.

### nMOS transistors (invert p and n for pMOS)

- depletion layer forms around n-wells
- only have current when p-substrate has a higher potential
- four terminal device: gate, source, drain, body
- When gate voltage increases beyond a threshold:
  - An inversion region forms under the gate with electrons as charge carriers
  - Creates an n-channel: current flows from source to drain.
- We want to keep n-well at a higher potential than the p-type substrate (otherwise we forward bias it)
  - Body connection for nMOS is to GND (reverse biased)
- Holes move slower than electrons<sup>1</sup> by a factor of 2 – 3x, which is why pMOS transistors are usually sized  $\sim 2 - 3x$  larger than nMOS.
- NMOS passes logical 0 well, passes a degraded 1. PMOS passes logical 1 well, but degraded 0.

---

<sup>1</sup>Technically holes are just the lack of electrons. In any case, this is because holes “travel” in the valence band, whereas electrons travel in the conduction band.

- **CMOS** - combination of PMOS and NMOS
  - pull-up network (PUN) of pMOS, pull-down network (PDN) of NMOS
  - if PUN and PDN are both on, we have a short circuit.
  - if PUN and PDN are both off, the output is floating (high-Z)
- PUN is the logical complement of PDN
- **Demorgan's Law**
  - $(A' + B') = (AB)'$
  - $(A'B') = (A + B)'$

## 2.2 Intro to Layout

### Layout Design Rules

- this is very idealized because we're using a relatively ancient process node (FreePDK45nm)
  - modern fabrication processes are *significantly* more complex

#### 2.2.1 Lambda ( $\lambda$ ) Design Rules

- $\lambda$  corresponds with half of the minimum feature size
- feature size is the minimum transistor channel length, or the minimum width of the polysilicon wire
- allows easy scaling for different (old) processes.
- not applicable to modern (sub 90nm) processes

#### Rules:

1. metal and diffusion have minimum width and spacing of  $4\lambda$
2. contacts are  $2\lambda \times 2\lambda$ , surrounded by  $\lambda b$  on layers above and below
3. polysilicon width is  $2\lambda$
4. polysilicon and contacts have spacing of  $3\lambda$  from others
5. polysilicon overlaps by  $2\lambda$  where it is desired, spacing of  $\lambda$  away from areas where no transistor is desired
6. n-well surrounds pMOS by  $6\lambda$ , avoids nMOS by  $6\lambda$

#### 2.2.2 Guides for Optimized CMOS Layouts

- optimize boolean expression before drawing stick diagram, layout
- horizontal  $V_{DD}$  rail on top, GND rail on bottom
  - p-diffusions close to  $V_{DD}$
  - n-diffusions close to GND
- minimize metal lengths
- polysilicon lines are high- $\Omega$ , and should generally run vertically. Avoid turns
- **merge diffusions**
  - e.g. NAND gate, drain and source of PUN can be merged. the drains of PDN can also be merged.
  - large savings on area, routing, performance

- size transistors appropriately such that equivalent resistances remain somewhat minimized

### Gate Layout with Euler Paths

- draw schematic
- find Euler path (doesn't have to end at the starting point)
- ensure label/ordering is the same for PUN/PDN
- If you do this correctly, you can create designs with nice, straight polysilicon.
- can be not-so-trivial at times, this is an NP-hard problem
- Avoid multiple metal layers, if possible (leave room for routing)
- Don't forget metal-poly, metal-metal, metal-diffusion contacts

### 2.2.3 Common Combinational and Sequential Circuit Elements

- Most are self-explanatory, really basic
  - AOI22: "and - or - invert" ( $Y = \sim ((AB) \mid (CD))$ )
    - AOI21 just passes C (no 2nd NAND gate)
  - OAI22: "or - and - invert" ( $Y = \sim ((A \mid B) \& (C \mid D))$ )
    - OAI21 just passes C (no 2nd NOR gate)

### Non-restoring Transmission Gate

- nMOS and pMOS in parallel
- called "non-restoring" because output voltage isn't being driven by  $V_{DD}$  or GND
  - signal slowly gets degraded as you put many non-restoring gates in series

### Tri-States

- a transmission gate is one way to build a (non-restoring) tri-state, when  $EN = 0$ , the output is high-Z
- A Restoring Tri-State Inverter uses two pMOS and two nMOS in series, outputs are directly driven by  $V_{DD}$  and GND

### Multiplexers

- can be built via NAND/NOR/AOI22 gates, but not very optimal
- can be built with two transmission gates (non-restoring)
- can be built with a pair of tri-state inverters
- Larger muxes (e.g. 4-1, 8-1) can be built hierarchically using 2-1 muxes, or flattened (4 or 8 tristates)
- With multiplexers, inverters, and tri-states, you can build sequential elements such as D-latches.

- By placing two D-Latches in series with an inverter between their CLK inputs, we create a DFF (posedge-triggered FF)
- Back-to-Back DFFs can malfunction due to clock skew, race conditions
  - ▶ Thus, we can insert buffers/gates to add some combinational delay between the DFFs<sup>2</sup>

---

<sup>2</sup>Don't overdo this or we end up with setup time failures