ECE 385

Fall 2025

Final Project Report

Krishnan Shankar (ks128@illinois.edu)
Aniketh Tarikonda (aniketh8@illinois.edu)

Contents

1 Introduction 1
1.1 (Brief) Description of Operationcouiiiiiiiiiiiniiiininann.. 1

2 Proposed High Level Block Diagram 1
3 Hardware e 1
3.1 DeSCription ..ottt 1
3.2 Module Descriptionso 2
3.2.1 flight_ sim_ t0P.SV ... 2

3.2.2 ddr_renderer top.SV ... 2

3.2.3 ddr3 _arbiter ... 4

3.2.4 ddr3_rdcal.v/ddr3_x16_phy_cust.v/ddr3_x16_phy params.vh 5

3.2.5 frame buffer.sv ... 5

3.2.6 CAChE. SV ..o 5

3.2.7 graphics tOD SV ¢ttt 6

3.2.8 gpu_wb_controller.sv 6

3.2.9 Zbufler.sv ... 8

3.2.10 TaSteTIZET .SV . oottt 8

3.2.11 PTOJECTOT SV .ottt ettt e 10

3.2.12 transformation.sv i 12

3.2.13 PIO SV et e 12

3.2.14 model engine.Sv 13

A SO WATE ..ttt 13
4.1 DeSCIriPtiOn ..ottt 13
4.2 User Inpub ... 14
4.3 Flight Dynamicsoooii i 15
4.3.1 Parameterst 15

4.3.2 BEquations 15

4.3.3 Edge Cases and Constantscouiiiiiiiiiiiiiieeninnn.. 17

4.4 Hardware Communicationo it 18
4.4.1 Communication Protocol i 18

4.4.2 Data Packingo 18

4.4.3 Memory-Mapped I/O ... 19

4.5 Main Loop ... 20
4.6 Vivado Block Designcco 20
4.7 Summary of Block Design Components, 21
4.7.1 Clocking Wizard ... e 21

4.7.2 MicroBlaze Processorouiiiiiiii 21

4.7.3 MicroBlaze Debug Module (MDM) ..., 21

4.7.4 MicroBlaze Local Memoryoiiiiiiiiiiiiiiiiiiiin 22

4.7.5 AXT INtErCONIECt . . oo vttt e e e 22

4.7.6 AXI Interrupt Controller i 22

4.7.7 Processor System Reseto 22

4.7.8 AXT TIMEr ..ot e e 22

4.7.9 AXT UArtlite . ..o e 23

4.7.10 AXT Quad SPI ... 23

4.7.11 AXI GPIO Modulesooiiiiii e 23

4.8 Summary of Program Files i 23
4.8 1 MAIILC .ttt e 23

4.8.2 usbh.h o 23

4.8.3 USD.C o 23

4.8.4 flight sim.h ... 23

4.8.5 flight_ sim.c ... 24

4.8.6 gPI0 L 24

A.8.T gDI0.C et 24

4.8.8 Other Miscellaneous Files i 24

5 FPGA Implementation i 24
5.1 RTL Block Diagram o e 24
5.2 Design Analysisttt e 25

6 CONCIUSION ...ttt ettt e et e e e e e 26
0.1 AL USAZE - ottt et e 27

6.2 REfeTenCes . ..ot 27

1 Introduction

For our project, we designed and implemented a comprehensive 3D flight simulator,
similar to Microsoft Flight Simulator and FlightGear (albeit not as complex), using the
RealDigital Urbana Board. The flight simulator presents users with a virtual plane,
which they can control using input devices (keyboard, joystick, etc.) to take off, fly, and
land. The surroundings are rendered in real-time on a connected monitor, providing an
immersive experience.

1.1 (Brief) Description of Operation

The operation of our project is rather simple; after connecting a USB keyboard to the
Urbana Board as well as an HDMI connector to an external monitor, the user can
control the displayed 3D object by different keys (W, A, S, D, etc.) which represent
actions like increasing/decreasing throttle, banking left /right, etc. The background of
the 3D object updates with respect to the changes in position, altitude, etc.

2 Proposed High Level Block Diagram

RealDigital Urbana FPGA Board

FPGA Hardware Design

MicroBlaze SoC

|nput N L Registers (Storage) Camera Logic H Camera Framebuffer
! » Input Communication |
Devices Nearby Terrain L Y

Physics & > Full Screen VGA to N M .
Input Processin i] > onitor
P! g Plane Details Slmulat_lon Framebuffer HDMI
» Plane Details & Terrain VGA Controller
SD Card Physics Numbers i
HUD Generation GPU

Figure 1: Block Diagram

Figure 1 shows our proposed block diagram. As you will see in this report, we deviated
substantially from this design due to resource constraints and other miscellaneous
design choices.

3 Hardware

3.1 Description

The hardware component of this project is responsible for rendering objects to the
monitor, as shown in Figure 1. Because we implemented 3D rendering, we added a fairly
large graphics pipeline between the display logic and the object data storage (ROMs).
The addition of 3D graphics necessitated the implementation of several vector/matrix
processing units, used for applying linear transformations, projection, and interpolation.

In our implementation, we leveraged the DDR3 memory capabilities of the RealDigital
Urbana board-thus allowing us to store large video buffers (VRAM) which ordinarily

would not have fit within BRAM/Distributed RAM on the Spartan-7 FPGA (or at least
without extraordinary logic element usage).

3.2 Module Descriptions

3.2.1 flight_sim__top.sv
flight_sim_ top.sv is our top level file which instantiates both the graphics component
of our project, as well as the block diagram shown in Figure 10.

3.2.2 ddr__renderer__top.sv
ddr_ renderer_ top.sv is our top-level graphics module, instantiating the line buffer,
graphics pipeline, graphics cache, and necessary arbitration and state machine logic.

The overall high-level structure of ddr3_renderer_ top is given by Figure 2.

Line Buffer

Graphics Direct-
Mapped Cache

Graphics Fipeline DDR3 Arbiter

DDR3
Memory

Figure 2: Block Diagram of ddr3 rendering mechanism.

Our light-weight DDR3 controller is capable of doing a single DRAM R/W request at a
time, which necessitated the DDR3 arbiter. In our implementation, it consisted of a
priority encoder:

if (fbuf active) begin
ddr3 mem wrdy = 1'b0;
ddr3 cache ready = 1'b0;
app_addr = rd_addr;
r phy cmd en = rd _cmd_en;
r phy cmd sel = rd cmd sel;
ri28 wrdata = 'b0;
end else if (init active) begin
// if initialization is active, frame buffer CAN interrupt it in order to
display
ddr3 cache ready = 1'b0;
ddr3_mem wrdy = ~wr_cmd_en;
app_addr = staging buffer _addr + wr_addr;
r phy cmd en = wr cmd_en;
r phy cmd sel = wr_cmd_sel;
r128 wrdata = ddr3 wr data;
end else if (cache _active) begin
// cache is uninterruptable
ddr3 cache ready = !w phy cmd full;
ddr3 _mem wrdy = 1'b0;
app_addr = cache ddr3 addr;
r phy cmd en = cache _ddr3_req;
r phy cmd sel = cache ddr3 rw n;
r128 wrdata = cache ddr3 dout;
end else begin
ddr3_mem wrdy = ~wr_cmd_en;
ddr3 cache ready = 1'b0;
app_addr = staging buffer _addr + wr_addr;
r phy cmd en = wr _cmd _en;
r phy cmd sel = wr_cmd_sel;
ri28 wrdata = ddr3 wr_data;
end

In this implementation, the line buffer (responsible to writing to the HDMI output) is

given highest priority, followed by the initialization module, cache, and lastly, the
graphics.

To allow the graphics and display logic to work concurrently, we use a double-buffering
technique. We instantiate two VRAMSs in our DDR3-one from address 0x00000 to
0x4AFFF, and another from address 0x4B000 to 0x95FFF. We label one as the
“output” buffer and the other as the “staging” buffer. On every falling edge of vsync, we
swap the pointers to these buffers, thus allowing for consistent output to the monitor.

An excerpt of this implementation is shown below:

if (~vsync && old vga vsync) begin
rd addr offset <= 27'b0;
// on falling edge of vsync, swap buffers

staging buffer addr <= output buffer addr;
output buffer addr <= staging buffer_addr;
end

Lastly, ddr3_renderer_top has an FSM to handle DDR3 reads/writes.

w_phy cmd_empty

StIdle

80 bursts

tWID“' <80 bursts @ .

ite

Figure 3: FSM Diagram of DDR3 Read Logic

For reference, the vsync signal refers to the falling edge of the actual vsync signal.
Signals w_phy cmd _empty and w_phy cmd full come from the DDR3 command FIFO, as
per the light-weight controller specification. Each DDR3 burst writes 128 bytes,
equivalent to 8 pixels on the screen. Thus, in order to read a full horizontal strip into
the line buffer, we need 80 consecutive DRAM bursts. The StFlush state exists in order
to avoid potential cache read/write requests from executing under the line buffer.

3.2.3 ddr3__arbiter
The ddr3_arbiter.sv module is poorly named—it just instantiates the DDR3 objects as

per the specification of the light-weight DDR3 controller. Furthermore, it connects to
LED|3:0] on the Urbana board, indicating whether DDR3 is enabled /disabled.

4

3.2.4 ddr3_rdcal.v/ddr3_x16_ phy_ cust.v/ddr3_x16_ phy_ params.vh
These files are imported from the light-weight DDR3 controller module.

3.2.5 frame__buffer.sv

frame_ buffer.sv defines the horizontal line buffer which is displayed to the HDMI
monitor. Internally, it consists of a True Dual Port BRAM instantiated with size 640x1,
with each address defining a 16-bit color space. One port of the BRAM is used to write
data in from ddr3_renderer_ top, while the other port is used to display color data to
the VGA to HDMI IP.

In order to read data in from ddr3_renderer_top, there is a (trivial) FSM consisting of
IDLE, ACTIVE, and WAIT states. There is also combinational logic to map the
corresponding 128-bit bursts from DDR3 into locations within BRAM. The following is
an excerpt of that logic:

bram waddr = bram_addr _base + {7'b0, bram wr dbyte index q};

for (integer i = 0; 1i <8; i =1 + 1) begin

if (bram wr dbyte index q == i) begin
bram dina = bram dina burst[i*16 +: 16];
end
end

3.2.6 cache.sv
The GPU makes frequent DDR3 reads (primarily during the Z-buffer state of the
pipeline), which necessitates the use of caching in order to improve performance.

The cache consists of a single port BRAM, structured into sixteen 512-bit wide cache
lines (32 consecutive values). We could achieve better spatial locality by expanding the
width of our cache lines, but this comes at a cost of increased DDR3 latency, which
could potentially interfere with other aspects of the design.

The cache uses the following FSM in Figure 4:

all written

clean miss

cache req

Figure 4: FSM Diagram of Direct-Mapped Cache Logic

We implemented a write-back cache, which writes back to main memory only when a
particular cache line has been modified and a dirty miss occurs at that particular line.
In the event of StEvictWB, the cache writes sequential 128-bit chunks to DDR3, of which
there are four. After everything is written, it begins reading new data into the cache
line.

We have used the transition cache req for brevity. In our implementation, this signal is
driven by certain control signals within the Z-buffer.

3.2.7 graphics__top.sv

This is the top-level graphics module which instantiates all modules in the graphics
pipeline. Furthermore, it contains a (trivial) FSM to draw a background to VRAM,
after which the rest of the 3D graphics are overlaid on top of it.

3.2.8 gpu__wb__controller.sv

In order to make efficient usage of DDR3, we devised a basic memory coalescing
mechanism within gpu_wb_ controller. At a high-level, the write-back controller waits

for 8 sequential memory addresses to be written to, after which point it executes one
DDR3 write operation. In the event that the write-back controller receives a memory
address not in the same contiguous area, it flushes the current buffer to DDR3, and
then reads the new value.

The FSM for write-back logic is shown in Figure 5.

din_wvalid

din_tag == curr_tag

din_wvalid

Figure 5: FSM Diagram of Write-back Controller Logic

For reference, values din_tag and curr_tag refer to the current address tag of data in,
as well as the values stored within the write-back buffer, respectively. During StRead,
data values are being continuously read in from the rest of the graphics pipeline. This
coalesced buffer is then written to DDR3 in StWriteback and StFlush. In our
implementation, StIdle is the default state, and none of the other states ever transition
back to it.

3.2.9 zbuffer.sv

zbuffer.sv implements a Z-buffer, allowing for displaying relative depth within our
graphics pipeline. It takes in alpha, beta, and gamma values from the rasterizer, as well
as the Z-values of the three vertices of the current triangle being rendered. It then uses
the following formula:

Zpixel = apixel ZO + ﬁpixel Zl + rYpixel Z2 (1)

in order to calculate the Z-value of the current pixel (Barycentric Interpolation). This
calculation is implemented by inferring DSP units on the FPGA:

tmp0® = $signed(z0) * $signed(alpha);
tmpl = $signed(zl) * $signed(beta);
tmp2 = $signed(z2) * $signed(gamma);

sum = tmp0 + tmpl + tmp2;

Note: a potential optimization we could have done to reduce WNS would be to pipeline
this into a explicit multiplication and addition stage, instead of performing the entire
interpolation combinationally.

After calculating the incoming Z-value, it is compared with the current Z-value being
stored in memory (these memory accesses are done through cache). If this Z-value is
smaller (closer to POV), the pixel is replaced (send to the write buffer).

3.2.10 rasterizer.sv

rasterizer.sv is responsible for generating a sequence of pixels which are bounded by the
specified triangle, passed in from the projector module. It also instantiates the
barycentric calculation module, which determines if pixels fall within the specified
triangle, as well as the barycentric coordinates («, 3, 7)

The rasterizer logic consists of the FSM shown in Figure 6.

vertex valid

bounds hit

wb_ready && pipe cleared

Figure 6: FSM Diagram of Rasterizer Logic

For reference, StSetup calculates the bounds of the smallest rectangular which fully
contains the specified triangle. These bounds are used to determine when StDraw
transitions to StFlush. StFlush is used to wait for residual values in the address/valid
pipelines to clear, after which it transitions to StDone.

3.2.10.1 barycentric__calc.sv

barycentric_ calc.sv is a module instantiated within our rasterizer which calculates
barycentric coordinates for each pixel within the bounding box and determines whether
it is within the specified triangle.

This module first calculates multiple areas using 2D cross products:

Area(P,B,C) = (B, — P,
Area(P,C,A) = (C,—FR,)(A,—P)—(C,—P,)(A,—E,)

Area(P,A,B) = (A, — B)(B,~ P,) — (A, — B,)(B, — B,)

The ratio of these areas to the overall inverse area of the triangle ABC returns the
barycentric coordinates a, (3, 7.

In our implementation, we take advantage of the fact that o + 8+ v =1 to calculate
v =1—a— (3, saving us from using excessive DSP units. This is shown in the excerpt
below:

alpha o <= r_norml 6;

beta o0 <= r _norm2_6;

gamma_o <= $signed(32'h01000000) - r norml 6 - r norm2 6;
within tri 7 <= within tri 6;

FP32 is expensive to implement in FPGAs, so we chose to used fixed-point Q8.24 and
Q16.16 for all calculations, depending on the degree of fractional precision required. In
this excerpt, 32'h01000000 is equal to decimal 1 in Q8.24.

We determine if a point is within the triangle by checking if the sign bit of all three
areas are the same.

0oof

0032

& within_iri 1

bl alphal31:0] 00999980

> W beta[31:0]

Figure 7: Testbench of Barycentric Calculation Module

The above testbench shows the operation of the barycentric_ calc module. After a point
in the 640 x 480 screen space is passed to the module, it calculates the «a, 3, A v values
in Q16.16, and determines if the pixel is within the triangle. This process is pipelined
with 8 cycles of latency.

3.2.11 projector.sv

projector.sv is responsible for projecting 3D points onto points in the 640x480 2D screen
space. It achieves this projection by applying a specific (sparse) projection matrix, and
then dividing the x, y, and translated z coordinates by z.

10

We configured the divide IP to use the high-radix mode as opposed to radix-2. This
allows significantly less LUT usage, at the cost of significantly increased DSP unit
usage. The observed latency of this IP was around 50 cycles. While this is significantly
longer than the latency of other arithmetic operations, we must consider:

e The bottleneck in our graphics unit is the rasterizer module, as it performs
operations at the order of O(NM) where N and M represent the size of the
bounding box.

o This costly division operation needs to be performed at most 3 times for each of the
three vertices of the triangle.

e Our graphics pipeline is clocked at 200Mhz, so the per-triangle latency for division
amounts to at most 1us.

3.2.11.1 Joint testbench for projector and rasterizer module

e r -+ P] 7 1 | |
mnmmmmmmmmmmmmm
T T O T 1 0 0 T O 1T

Figure 8: Joint testbench for Projector and Rasterizer Module

Above is an example testbench. Projector is fed an array of triangle vertices, which is
converted to 2D and sent to the rasterizer, which generates the respective pixel values.

We can see that around 0.250us, proj out valid is asserted high, indicating that the
output of the projector module is valid. At this point, the rasterizer module reads the
vertex data and begins generating pixel values as seen at time 10.175us, for example.

This particular testbench generates a ASCII representation of the final image, as seen
below:

11

e T
IR R

T i L TR TTTPTTOTRP
HHHEEEHEIEIRE000000444
HHHEH R
IR R

T i L TR TTTPTTOP TR
HHHEEEHEIEIRE000000444
HHHEH R
IR R

T i L TR TTTPTTOP TR
HHEEEHEIHER400400044S
IR R
IR R

T i L TR TTTPTTOP TR
HHEEEHEIHER400400044S
IR R
IR R

T i L TR TTTPTTOP TR
I
IR R

Figure 9: ASCII output of above testbench. In this case, we draw a cube.

3.2.12 transformation.sv

transformation.sv is responsible for applying a linear transformation to the vertices of a
triangle. This allows for rotations and translations within 3D space, which gets mapped
down to 2D coordinates by projector.sv.

An excerpt of these matrix operations is shown below:

next opt x = products[0][0] + products[0][1] + products[0][2] +
$signed({matrix[0][3], 16'b0});

next opt y = products[1]1[0] + products[1][1] + products[1][2] +
$signed({matrix[1]1[3], 16'b0});

next opt z = products[2][0] + products[2][1] + products[2][2] +
$signed({matrix[2][3], 16'b0O});
end

As previously mentioned, we use fixed-point Q16.16 instead of FP32, hence the 16-bit
left shifts to convert values to Q16.16.

3.2.13 gpio.sv

gpio.sv instantiates the transformation module, and generates the transformation
matrix which is passed to transformation.sv. It does so by reading data from the GPIO
(this will be further elaborated upon in the software section). This data is then sent to
a Xilinx CORDIC IP to generate cosine/sine values which ar passed into the output
matrix.

The interaction between gpio.sv and transformation.sv is shown below:

transformation transformation inst (
.clk(clk),
.rst(rst),

12

.t x(initial t x),
.t y(initial t y),
.t z(initial t z),
.color(16'hFFFF),
.in valid(out valid),
.data read(data read),
.model matrix('{
'{ cos, -sin, 10'b0O, 10'bO 1},
'{ sin, cos, 10'b0, 10'b0O },
'{ 10'b0O, 10'bO, 10'h1l00, 10'bO }

1),
.stall(1'b0),

.out x(transformed t x),

.out y(transformed t y),

.out z(transformed t z),

.color out(color out),

.valid(transform valid)
);
gpio.sv also has a (trivial) FSM which continually reads values from the CORDIC IP,
passes the data to the transformation module, and then waits for the next set of

vertices to be passed.

3.2.14 model__engine.sv

model__engine.sv is responsible for sending vertex/face data to the rest of the graphics
pipeline. Internally, it instantiates two ROMs vertex _rom and face rom, each of which
are BRAM arrays holding vertex/face data in a particular format:

Vertex data is stored in BRAM as 96-bit values, holding the Q16.16 (X,Y, Z) data of

each vertex.

Face data is stored in BRAM as 32-bit values, where bits [31:16] store the color of the
particular triangular face, and bits [15:0] store the addresses of each vertex within the
vertex ROM.

The Vertex and Face ROMs are initialized with their respective .coe file in order to load
the appropriate data.

4 Software

4.1 Description

The software component of the flight simulator is primarily responsible for handling
user inputs, calculating flight dynamics by running an accurate physics simulation, and
communicating the plane’s state to the hardware design for rendering.

13

4.2 User Input

User inputs are handled through USB keyboard communication. Specifically, the Serial

Peripheral Interface (SPI) protocol is used to communicate with the MAX3421E chip on
the FPGA board.

Using this SPI primitive, the MicroBlaze implements a USB driver that performs high-
level USB operations, like listing connected devices, configuring them, and reading data.
This driver is implemented in MAX3421E.c and other files in the lw_usb directory.

Additionally, the MAX3421E chip also connects to some non-SPI pins on the FPGA
board—specifically, the interrupt and reset pins. The complete interface between the
FPGA and MAX3421E chip is shown in Figure 10. The interrupt and reset pins are
both connected into GPIO modules (gpio_usb_int and gpio usb rst) in the Vivado
block design, allowing the MicroBlaze to read the interrupt status and control the reset
line via MMIO.

———— U12)] USB_MISO (R o
User I .
vis| USB _MOY gp 128 byte Write FIF =
V14 USBiCCLﬂ——IP =
_— UsB ss B 23 S-bit 128 byte Read FIF —
— registers
L T13 USB _INT 0
v13| USB_RESET B_|
12MHz ||
FPGA | Osc. MAX3421 USB Controller
G

Figure 10: Connection between the FPGA and MAX3421E chip

The MicroBlaze uses the USB driver to read keyboard inputs from the user every time-
step. Specifically, the keys for controlling the plane are as follows:

o Throttle: Up Arrow (Increase), Down Arrow (Decrease)
o Rudder: Left Arrow (Left), Right Arrow (Right)

o Elevators: W (Pitch Up), S (Pitch Down)

o Ailerons: A (Roll Left), D (Roll Right)

The usb.c file contains the code for reading and processing these keyboard inputs. It
implements the usb get inputs function, which parses these key presses into a struct

usb_report data structure containing the current user inputs. The struct definition is as
follows:

#include "xil types.h"

struct usb _report {

14

u8 is throttle up;
u8 is throttle down;
u8 is pitch up;

u8 is pitch _down;

u8 is roll left;

u8 is roll right;

u8 is yaw left;

u8 is yaw right;

b
4.3 Flight Dynamics

A significant portion of the difficulty for this project came from implementing accurate
flight dynamics. At first, we attempted to implement this physics engine in hardware,
but quickly realized that the complexity of the calculations were simply infeasible given
the limited resources on the FPGA board. For example, even simple additions and
subtractions would infer DSP units, which were both limited in number and significant
sources of timing violations. As a result, we decided to implement flight dynamics on
the MicroBlaze processor, allowing us to just send current flight state (position, velocity,
attitude, etc.) to the hardware design for rendering.

4.3.1 Parameters
Before describing the equations we used, it’s important to define the numerous
parameters involved.

e In general, k represents a specific constant

o In general, i represents the value of a particular input (like throttle or rudder)

e 7, i, and x represent pitch, roll, and yaw angle respectively—these three angles
define the attitude of the aircraft

o (C; and Cj are the lift and drag coefficients respectively

o Forces on the aircraft are parameterized as thrust (7), lift (L), and drag (D)

v is the velocity (airspeed) of the aircraft

x and y represent an arbitrary (z,y) position

h is the altitude above ground

A is the wing area

p is air density

4.3.2 Equations

The primary source for our flight dynamics equations was this textbook section.

First, we derived the following equations for thrust (T'), lift (L), and drag (D).

T = kTithrottle (3)

15

https://eng.libretexts.org/Bookshelves/Aerospace_Engineering/Fundamentals_of_Aerospace_Engineering_(Arnedo)/07%3A_Mechanics_of_flight/7.01%3A_Performances/7.1.03%3A_Hypotheses

1

L= 50021‘101 (4)
1
D= §pv2ACd (5)

Then, from various resources, we derived the following equations for lift and drag
coefficients for a commercial aircraft.

C, = koo + kv (6)
Cy = kpyCP + kpy (7)

We also derived an equation for air density based on altitude.

0.6
1 (=2 \h at
p (27600) att

0.6
— (1 (25 1.225 ke /m?
((27600)h)* 5 ke/m

Using the equations for forces, we can calculate changes in velocity and attitude over a

(8)

small timestep (dt).

T—-D— i
dv = ISR g 9)
m
Isi
dy = —22H gy (10)
MV COS Y
L cos p — mg cosy
dy = dt (11)

mv

So, at each timestep, we can integrate the above differentials to update the aircraft’s
airspeed and attitude.

The attitude of the aircraft is also affected by control surface deflections. This is
simplified using the following equations.

dfy = kpitchielevator di (12)

16

dp =k dt (13)

roll%aileron

dy =k dt (14)

yaw Yrudder

We can account for change in the aircraft’s mass due to fuel consumption. 7 is the fuel
consumption rate (kg/s) per unit thrust.

dm = —Tndt (15)

Finally, we can update the aircraft’s position using the following equations. Note that
these equations update position based on attitude and airspeed, which are in turn
updated using the previous equations based on forces on the aircraft. This reflects
proper physics modeling.

dz = vcos~ycos x dt (16)
dy = vcos~ysinx dt (17)
dh = vsinydt (18)

All of these equations are either calculated or integrated on the MicroBlaze processor
for each timestep, updating the aircraft’s state accordingly. This code is implemented in
the update plane state function in flight sim.c.

4.3.3 Edge Cases and Constants
To account for some special edge cases, a few additional rules are implemented:

o The aircraft cannot go below ground level (altitude h < 0)

o The aircraft cannot have a negative airspeed (v < 0)

e If the aircraft is within 5 feet of the ground, it cannot roll or pitch

o Pitch and roll angles are clamped to 420 degrees to simulate a fly-by-wire system

Finally, research was done to determine reasonable values for the various constants used
in the equations. These values are defined in flight sim.c as part of the

default plane characteristics variable. For sake of conciseness, these values will not
be listed here, but they are described in great detail in the code comments.

17

4.4 Hardware Communication

4.4.1 Communication Protocol

A lot of effort was spent determining an efficient and effective way for the MicroBlaze
processor to communicate the plane’s state to the hardware design. Initially, we
considered using a custom AXI peripheral with a large number of registers, which would
expose these registers as output ports to the hardware design. However, this approach
was abandoned due to the sheer complexity and difficulty with implementing AXI
peripherals and dealing with the IP integrator in Vivado.

Instead, we opted to use eight GPIO modules, each with a 32-bit output data port. This
gave us a total of 256 bits to communicate the plane’s state, which we would need to
pack and write appropriately using memory-mapped I/O (MMIO) operations from the
MicroBlaze.

4.4.2 Data Packing

To begin, we implemented a struct plane state export in flight sim.h, which would
define the specific variables that needed to be “exported” from the massive plane state
structure to the hardware design. The struct definition is as follows:

struct plane state export {
uint32 t status; // bits that convey status info (e.g., ready bit)
uint32 t latitude;
uint32 t longitude;
uint32 t altitude;
uintl6e t airspeed;
uintle t pitch;
uintle t roll;
uintle t yaw;
uintle t throttle;
uintle t climb rate;

b

Appropriate integer sizes were chosen for each variable to ensure sufficient precision
while minimizing bit usage. For example, latitude and longitude are represented as 32-
bit integers in microdegrees, allowing for precise positioning without floating-point
representation.

Another key design decision was to use 4-bit segments of the integer values to represent
a base-10 number. For example, typically, an airspeed of 123 knots would be represented
as 0x007B in hexadecimal, which would then be sent to the hardware design. However,
we instead chose to represent this as 0x0123, where each 4-bit segment corresponds to a
single decimal digit. The reasoning for this decision was to simplify the hardware design
and allow it to use less resources. Specifically, we considered the situation where the
hardware design would need to display the text of the airspeed value on the screen. In

18

this situation, being able to look up every 4-bit segment in a small ROM would be
much simpler and more resource-efficient than implementing a full binary-to-decimal
conversion in hardware.

With this encoding scheme defined, we then defined the specific encoding scheme for
each variable in the plane state export struct. For example, the airspeed variable was
chosen to be represented as ###.#, meaning up to three decimal digits before the
decimal point and one digit after would be sent to the hardware design. Thus, an
airspeed of 123.4 knots would be represented as 0x1234. Similar encoding schemes were
defined for the other exported variables.

4.4.3 Memory-Mapped I/0
To then send this packed data to the hardware design, we implemented memory-
mapped I/O (MMIO) operations in the gpio.c and gpio.h files.

To allow for easy operations, we defined structs that represented the registers of each
GPIO peripheral. For example, one such struct is defined as follows:
struct gpiol regs {
union {
struct attribute ((packed)) {
uintl6 t airspeed;
uintle t pitch;
+

uint8 t raw[4];
+
};

Such a struct definition allows us to easily write to the airspeed and pitch data values,
while also allowing us to access the raw bytes stored in the GPIO peripheral’s data
register.

Using these struct definitions, we then implemented proper memory-mapped 1/0O using
volatile pointers to the base addresses of each GPIO peripheral. For example, one such
pointer is defined as follows:

#include "xparameters.h"

#define GPIO1l (*(volatile struct gpiol regs*)(XPAR GPIO DATA 1 BASEADDR))

This setup essentially allows very simple and straightforward GPIO operations. For
example, to set the airspeed and pitch values in GPIO, we can simply do the following:

GPIOl.airspeed = export state->airspeed;
GPIO1l.pitch = export state->pitch;

19

This code is implemented in the write plane export to gpio function in gpio.c, which
is called every timestep to update the GPIO peripherals with the latest plane state
(after it is packed into the plane_state export struct).

4.5 Main Loop

Putting it all together, the main loop of the MicroBlaze software is implemented in
main.c. The code for the main loop is as follows:

while (TRUE) {
// Populate USB report
u8 rcode = usb get inputs(&report);

// Update plane state based on USB report
float time step = 0.1f;
update plane state(&plane, &report, time step);

// Export plane state to plane state export struct
export plane state(&plane, &plane _export);

// Write exported state to GPIO MMIO
write plane export to gpio(&plane_export);

}

This loop combines all the components described previously, reading user inputs,
updating flight dynamics, packing the plane state, and writing it to GPIO for the
hardware design to render.

4.6 Vivado Block Design

To support the features described above, the MicroBlaze and required peripherals were
implemented in a Vivado block design. The complete block design is shown in
Figure 11.

20

icrobiaze_0

T L ol
MicroBlaze ™ | el

Figure 11: Vivado Block Design

4.7 Summary of Block Design Components

4.7.1 Clocking Wizard

The clocking wizard generates arbitrary clock frequencies using a PLL. The block design
clocking wizard is redundant in this design, since the block design just needs a single
100MHz clock, which is already provided by the RealDigital Urbana board. However, we
kept it in the design for potential future use.

4.7.2 MicroBlaze Processor

The MicroBlaze is a 32-bit RISC processor designed by AMD for Xilinx FPGAs. It’s a
soft-core processor, meaning it can be fully implemented using the programmable logic
resources of the FPGA. It uses the AXI Interface as an I/O bus, allowing it to
communicate with various peripherals and memory components within the FPGA
design. It also supports local memory (LMB), JTAG-based debugging through the
MicroBlaze Debug Module (MDM), and interrupt handling through the AXI Interrupt
Controller.

4.7.3 MicroBlaze Debug Module (MDM)

The MicroBlaze Debug Module (MDM) is a dedicated hardware block that provides
debugging capabilities for the MicroBlaze. For example, it allows for setting breakpoints
in code, stepping through lines of code, and other standard debugging features—all

21

while the code runs on the MicroBlaze processor within the FPGA. It interfaces with
the MicroBlaze via a dedicated debug interface, and connects to the JTAG port on the
FPGA board for communication with external debugging tools. Specifically, the “PROG
UART” port on the RealDigital Urbana board, which is normally used for programming
the FPGA, is also used for this JTAG communication.

4.7.4 MicroBlaze Local Memory

The MicroBlaze Local Memory is a small, fast memory block that is directly connected
to the MicroBlaze processor. It implements the Local Memory Bus (LMB) interface,
which is a simple, low-latency bus designed for high-speed access to memory. This local
memory is typically used for storing instructions, which are very frequently accessed. In
our design, we configured the local memory to be 128KB in size.

4.7.5 AXI Interconnect

The AXI Interconnect facilitates communication between the MicroBlaze processor and
various AXI peripherals in the design. It uses the AXI protocol, with the MicroBlaze
acting as the master and the peripherals as slaves. It also handles properly routing
transactions to the correct peripheral based on the address being accessed. In our
design, the AXI Interconnect connects the MicroBlaze to nine peripherals: the AXI
Interrupt Controller, AXI Uartlite, AXI Timer, two GPIO modules for USB
communication, and four GPIO modules for plane state transfer to the hardware design.

4.7.6 AXI Interrupt Controller

The AXI Interrupt Controller manages interrupt signals from various peripherals and
forwards them to the MicroBlaze processor. It’s very similar to the Platform-Level
Interrupt Controller (PLIC) used in RISC-V systems. It supports interrupt priorities,
enabling/disabling interrupts, and claiming/acknowledging interrupts from the

MicroBlaze. In our design, it connects to four interrupt sources: the AXI Uartlite, AXI
Timer, AXI Quad SPI, and AXI GPIO module used for USB interrupts.

4.7.7 Processor System Reset

The Processor System Reset module generates reset signals for the MicroBlaze
processor and other components in the design. It ensures that all components are reset
on power on, and also ensures that resets are properly synchronized with the system
clock. In our design, it generates reset signals for the MicroBlaze, AXI Interconnect,
AXI Interrupt Controller, and all the AXI peripherals.

4.7.8 AXI Timer

The AXI timer allows the MicroBlaze to keep track of time by creating programmable
interrupt timers, which can be configured by the MicroBlaze via AXI. This is useful
because it allows the MicroBlaze to perform time-based operations, such as polling the
USB device at regular intervals (as done in our design).

22

4.7.9 AXI Uartlite

The AXI Uartlite module allows the Microblaze to send and receive data using the
UART protocol. In our design, we use this module to allow the MicroBlaze to print
messages to a serial console, which get sent through the “PROG UART” port on the
RealDigital Urbana board. On the host computer, we can use a serial terminal (like the
screen command, or the integrated debug console in Vitis) to view these messages.

4.7.10 AXI Quad SPI
The AXI Quad SPI module allows the MicroBlaze to communicate with SPI devices

using the SPI protocol. In our design, we use this module to communicate with the
MAX3421E USB controller chip.

4.7.11 AXI GPIO Modules

The AXI GPIO modules allow the MicroBlaze to interact with general-purpose input/
output (GPIO) pins on the FPGA board using memory-mapped I/O. In our design, we
use two AXI GPIO modules for USB communication: one for reading USB interrupts
from the MAX3421E chip, and one for controlling the reset line of the MAX3421E chip.
Additionally, we use four AXI GPIO modules for transferring the plane state from the
MicroBlaze to the hardware design for rendering.

4.8 Summary of Program Files

4.8.1 main.c

This file contains the main loop of the MicroBlaze software, which continuously reads
user inputs, updates flight dynamics, packs the plane state, and writes it to GPIO for
the hardware design to render.

4.8.2 usb.h

This header file defines the usb_report struct, which represents user inputs from the
USB keyboard.

4.8.3 usb.c

This file implements USB communication using the MAX3421E chip. It contains the
usb _get inputs function, which reads keyboard inputs and populates a usb_report
struct. It also deals with USB setup and configuration.

4.8.4 flight__sim.h

This header file defines three main structs: plane characteristics, which defines the
physical characteristics of the aircraft; plane state, which defines the current state of
the aircraft; and plane state export, which defines the subset of the plane state that is
exported to the hardware design.

23

4.8.5 flight__sim.c

This file first instantiates a plane characteristics variable with reasonable values for a
commercial aircraft. It then implements the init plane state and update plane state
functions, which update the plane state based on user inputs and flight dynamics
equations. It also implements the export plane state function, which packs the plane
state into a plane_state export struct for GPIO transfer.

Some helper functions used in this file include d_sin and d_cos, which compute the sine
and cosine of an angle in degrees, and get nth digit and get nth digit d, which
extract specific decimal digits from floats and doubles.

4.8.6 gpio.h

This header file defines structs representing the registers of each GPIO peripheral used
in the design. It also defines volatile pointers to the base addresses of each GPIO
peripheral for memory-mapped 1/0O.

4.8.7 gpio.c

This file implements the write plane export to gpio function, which writes the packed
plane state from a plane state export struct to the appropriate GPIO peripherals
using memory-mapped I/O.

4.8.8 Other Miscellaneous Files

platform.h, platform.c, and platform config.h are standard files generated by Vitis for
setting up the MicroBlaze platform. They handle low-level initialization of the processor
and peripherals.

All files within the lw_usb directory implement a lightweight USB stack for the
MicroBlaze, including low-level USB operations and the MAX3421E driver. These files
are used in usb.c to handle USB communication.

5 FPGA Implementation

5.1 RTL Block Diagram
Figure 12 shows the RTL block diagram of the FPGA implementation.

24

5.2 Design Analysis
Table 1 shows design analysis results for the FPGA implementation.

25

Utilization

Look-Up Tables (LUTS) 7096 / 32600 (21.77%)
Digital Signal Processing Units (DSPs) 71 / 120 (59.17%)
Memory (BRAM) 37.5 /75 (50%)
Memory (LUTRAM) 500 / 9600 (5.21%)
Latches 0
Flip-Flops (FFs) 7493 / 65200 (11.49%)
Input/Output (I0) 88 / 210 (41.9%)
Mixed-Mode Clock Managers (MMCMs) 3 /5 (60%)
Timing
Worst Negative Slack (WNS) —3.234 ns
Max Frequency 75.563 MHz
Power
Static Power 0.077 W
Dynamic Power 0.953 W
Total Power 1.03 W

Table 1: Design analysis results

6 Conclusion

Our expectation coming into this project was to get a fully functional flight simulator
with 3D graphics, full controls, and potential dynamic terrain generation. However, we
were not able to accomplish a lot of these (ambitious) goals. This is partially due to
certain design decisions made which added unnecessary complexity to the system, and
made integration of the software and hardware components difficult. In retrospect, our
decision to use DDR3, while theoretically efficient, forced us to implement a lot of
supplementary logic such as caches and DRAM arbiters in order to make the overall
system performant. The instrinsic complexity of our system alongside limited time due
to other challenging classes made finishing this project in its entirety rather unrealistic.

There are several design decisions which, in retrospect, could have simplified the system
significantly.

e Quantizing Z-values - Because our 3D model doesn’t move in the Z-direction
significantly in the flight simulator, we can quantize these values to a small range
(potentially 4-bit). With a significantly reduced Z-value size, we can store the
entirety of the Z-buffer within a large BRAM instance. With the Z-buffer stored
entirely in BRAM, we forgo the direct mapped cache and its associated logic within
ddr3_ renderer__top.

26

e AXI - We decided to transmit data through GPIO, rather than an established
communication interface like AXI/AXI-Lite. In hindsight, integration of our
hardware and software component could have been significantly easier with AXI
handshaking (rather than relying on GPIO, which we found to be rather unreliable)

e Color Space Reduction - By reducing the color space from 16-bit RGB565 to 8-
bit, we can have a higher pixel throughput (as our memory subsystem can now store
twice the pixels as before).

Thus, there is a lot of work that can be done to extend the functionality of this project,
like adding some of the features which we weren’t able to implement. Luckily, there is a
lot of physical space on our FPGA for these features—we ended up using 21.77% of the
LUTs, and 11.49% of the FFs. This can be attributed to many optimizations and our
decision to use light-weight memory controllers rather than LUT-intensive Xilinx IPs.
However, we did use a significant amount of DSP units (59.17%), which limits the
amount of arithmetic-intensive units we can potentially add to the design.

Overall, we found this project to be very rewarding (albeit stressful). We had extremely
complex hardware and software components, and we put a lot of work into writing
(numerous) FSMs, memory controllers, and graphics architectures. There was also a
significant debugging component to our project—especially considering the number of
moving parts. We would have to unit test each module, and then write larger
testbenches to test overall system functionality.

Lastly, rather than following a prexisting design, this project had us making a lot of
independent design decisions. We firmly believe our experiences making these design
decisions (some good, some awful in retrospect) will be incredibly beneficial in our
future endeavours in digital hardware design.

6.1 AI Usage

We used LLM tools to generate testbenches and templates for testbenches, which were
used to debug various HDL components of our project.

Our LLM of choice was Google’s Gemini Pro.

6.2 References
https://alchitry.com /tutorials /projects/gpu/

https: //github.com /someone755 /ddr3-controller

https://github.com /kooltzh /xilinx-coe-generator /tree /master

https://www.cs.utexas.edu/~fussell /courses /cs384g-fall2013 /lectures /lecture20-7

buffer pipeline.pdf

https: //github.com /sylefeb /tinygpus

27

https://alchitry.com/tutorials/projects/gpu/
https://github.com/someone755/ddr3-controller
https://github.com/kooltzh/xilinx-coe-generator/tree/master
https://www.cs.utexas.edu/~fussell/courses/cs384g-fall2013/lectures/lecture20-Z_buffer_pipeline.pdf
https://www.cs.utexas.edu/~fussell/courses/cs384g-fall2013/lectures/lecture20-Z_buffer_pipeline.pdf
https://github.com/sylefeb/tinygpus

	1 Introduction
	1.1 (Brief) Description of Operation

	2 Proposed High Level Block Diagram
	3 Hardware
	3.1 Description
	3.2 Module Descriptions
	3.2.1 flight_sim_top.sv
	3.2.2 ddr_renderer_top.sv
	3.2.3 ddr3_arbiter
	3.2.4 ddr3_rdcal.v/ddr3_x16_phy_cust.v/ddr3_x16_phy_params.vh
	3.2.5 frame_buffer.sv
	3.2.6 cache.sv
	3.2.7 graphics_top.sv
	3.2.8 gpu_wb_controller.sv
	3.2.9 zbuffer.sv
	3.2.10 rasterizer.sv
	3.2.10.1 barycentric_calc.sv

	3.2.11 projector.sv
	3.2.11.1 Joint testbench for projector and rasterizer module

	3.2.12 transformation.sv
	3.2.13 gpio.sv
	3.2.14 model_engine.sv

	4 Software
	4.1 Description
	4.2 User Input
	4.3 Flight Dynamics
	4.3.1 Parameters
	4.3.2 Equations
	4.3.3 Edge Cases and Constants

	4.4 Hardware Communication
	4.4.1 Communication Protocol
	4.4.2 Data Packing
	4.4.3 Memory-Mapped I/O

	4.5 Main Loop
	4.6 Vivado Block Design
	4.7 Summary of Block Design Components
	4.7.1 Clocking Wizard
	4.7.2 MicroBlaze Processor
	4.7.3 MicroBlaze Debug Module (MDM)
	4.7.4 MicroBlaze Local Memory
	4.7.5 AXI Interconnect
	4.7.6 AXI Interrupt Controller
	4.7.7 Processor System Reset
	4.7.8 AXI Timer
	4.7.9 AXI Uartlite
	4.7.10 AXI Quad SPI
	4.7.11 AXI GPIO Modules

	4.8 Summary of Program Files
	4.8.1 main.c
	4.8.2 usb.h
	4.8.3 usb.c
	4.8.4 flight_sim.h
	4.8.5 flight_sim.c
	4.8.6 gpio.h
	4.8.7 gpio.c
	4.8.8 Other Miscellaneous Files

	5 FPGA Implementation
	5.1 RTL Block Diagram
	5.2 Design Analysis

	6 Conclusion
	6.1 AI Usage
	6.2 References

