
ECE 385
Fall 2025

Final Project Report

Krishnan Shankar (ks128@illinois.edu)

Aniketh Tarikonda (aniketh8@illinois.edu)

Contents
1 Introduction . ⁠1

1.1 (Brief) Description of Operation . ⁠1

2 Proposed High Level Block Diagram . ⁠1

3 Hardware . ⁠1

3.1 Description . ⁠1

3.2 Module Descriptions . ⁠2

3.2.1 flight_sim_top.sv . ⁠2

3.2.2 ddr_renderer_top.sv . ⁠2

3.2.3 ddr3_arbiter . ⁠4

3.2.4 ddr3_rdcal.v/ddr3_x16_phy_cust.v/ddr3_x16_phy_params.vh ⁠5

3.2.5 frame_buffer.sv . ⁠5

3.2.6 cache.sv . ⁠5

3.2.7 graphics_top.sv . ⁠6

3.2.8 gpu_wb_controller.sv . ⁠6

3.2.9 zbuffer.sv . ⁠8

3.2.10 rasterizer.sv . ⁠8

3.2.11 projector.sv . ⁠10

3.2.12 transformation.sv . ⁠12

3.2.13 gpio.sv . ⁠12

3.2.14 model_engine.sv . ⁠13

4 Software . ⁠13

4.1 Description . ⁠13

4.2 User Input . ⁠14

4.3 Flight Dynamics . ⁠15

4.3.1 Parameters . ⁠15

4.3.2 Equations . ⁠15

4.3.3 Edge Cases and Constants . ⁠17

4.4 Hardware Communication . ⁠18

4.4.1 Communication Protocol . ⁠18

4.4.2 Data Packing . ⁠18

4.4.3 Memory-Mapped I/O . ⁠19

4.5 Main Loop . ⁠20

4.6 Vivado Block Design . ⁠20

4.7 Summary of Block Design Components . ⁠21

4.7.1 Clocking Wizard . ⁠21

4.7.2 MicroBlaze Processor . ⁠21

4.7.3 MicroBlaze Debug Module (MDM) . ⁠21

4.7.4 MicroBlaze Local Memory . ⁠22

4.7.5 AXI Interconnect . ⁠22

4.7.6 AXI Interrupt Controller . ⁠22

4.7.7 Processor System Reset . ⁠22

4.7.8 AXI Timer . ⁠22

4.7.9 AXI Uartlite . ⁠23

4.7.10 AXI Quad SPI . ⁠23

4.7.11 AXI GPIO Modules . ⁠23

4.8 Summary of Program Files . ⁠23

4.8.1 main.c . ⁠23

4.8.2 usb.h . ⁠23

4.8.3 usb.c . ⁠23

4.8.4 flight_sim.h . ⁠23

4.8.5 flight_sim.c . ⁠24

4.8.6 gpio.h . ⁠24

4.8.7 gpio.c . ⁠24

4.8.8 Other Miscellaneous Files . ⁠24

5 FPGA Implementation . ⁠24

5.1 RTL Block Diagram . ⁠24

5.2 Design Analysis . ⁠25

6 Conclusion . ⁠26

6.1 AI Usage . ⁠27

6.2 References . ⁠27

1 Introduction
For our project, we designed and implemented a comprehensive 3D flight simulator,

similar to Microsoft Flight Simulator and FlightGear (albeit not as complex), using the

RealDigital Urbana Board. The flight simulator presents users with a virtual plane,

which they can control using input devices (keyboard, joystick, etc.) to take off, fly, and

land. The surroundings are rendered in real-time on a connected monitor, providing an

immersive experience.

1.1 (Brief) Description of Operation
The operation of our project is rather simple; after connecting a USB keyboard to the

Urbana Board as well as an HDMI connector to an external monitor, the user can

control the displayed 3D object by different keys (W, A, S, D, etc.) which represent

actions like increasing/decreasing throttle, banking left/right, etc. The background of

the 3D object updates with respect to the changes in position, altitude, etc.

2 Proposed High Level Block Diagram

Figure 1: Block Diagram

Figure 1 shows our proposed block diagram. As you will see in this report, we deviated

substantially from this design due to resource constraints and other miscellaneous

design choices.

3 Hardware

3.1 Description
The hardware component of this project is responsible for rendering objects to the

monitor, as shown in Figure 1. Because we implemented 3D rendering, we added a fairly

large graphics pipeline between the display logic and the object data storage (ROMs).

The addition of 3D graphics necessitated the implementation of several vector/matrix

processing units, used for applying linear transformations, projection, and interpolation.

1

In our implementation, we leveraged the DDR3 memory capabilities of the RealDigital

Urbana board–thus allowing us to store large video buffers (VRAM) which ordinarily

would not have fit within BRAM/Distributed RAM on the Spartan-7 FPGA (or at least

without extraordinary logic element usage).

3.2 Module Descriptions

3.2.1 flight_sim_top.sv

flight_sim_top.sv is our top level file which instantiates both the graphics component

of our project, as well as the block diagram shown in Figure 10.

3.2.2 ddr_renderer_top.sv

ddr_renderer_top.sv is our top-level graphics module, instantiating the line buffer,

graphics pipeline, graphics cache, and necessary arbitration and state machine logic.

The overall high-level structure of ddr3_renderer_top is given by Figure 2.

Figure 2: Block Diagram of ddr3 rendering mechanism.

Our light-weight DDR3 controller is capable of doing a single DRAM R/W request at a

time, which necessitated the DDR3 arbiter. In our implementation, it consisted of a

priority encoder:

2

if (fbuf_active) begin

 ddr3_mem_wrdy = 1'b0;

 ddr3_cache_ready = 1'b0;

 app_addr = rd_addr;

 r_phy_cmd_en = rd_cmd_en;

 r_phy_cmd_sel = rd_cmd_sel;

 r128_wrdata = 'b0;

 end else if (init_active) begin

 // if initialization is active, frame buffer CAN interrupt it in order to

display

 ddr3_cache_ready = 1'b0;

 ddr3_mem_wrdy = ~wr_cmd_en;

 app_addr = staging_buffer_addr + wr_addr;

 r_phy_cmd_en = wr_cmd_en;

 r_phy_cmd_sel = wr_cmd_sel;

 r128_wrdata = ddr3_wr_data;

 end else if (cache_active) begin

 // cache is uninterruptable

 ddr3_cache_ready = !w_phy_cmd_full;

 ddr3_mem_wrdy = 1'b0;

 app_addr = cache_ddr3_addr;

 r_phy_cmd_en = cache_ddr3_req;

 r_phy_cmd_sel = cache_ddr3_rw_n;

 r128_wrdata = cache_ddr3_dout;

 end else begin

 ddr3_mem_wrdy = ~wr_cmd_en;

 ddr3_cache_ready = 1'b0;

 app_addr = staging_buffer_addr + wr_addr;

 r_phy_cmd_en = wr_cmd_en;

 r_phy_cmd_sel = wr_cmd_sel;

 r128_wrdata = ddr3_wr_data;

 end

In this implementation, the line buffer (responsible to writing to the HDMI output) is

given highest priority, followed by the initialization module, cache, and lastly, the

graphics.

To allow the graphics and display logic to work concurrently, we use a double-buffering

technique. We instantiate two VRAMs in our DDR3–one from address 0x00000 to

0x4AFFF, and another from address 0x4B000 to 0x95FFF. We label one as the

“output” buffer and the other as the “staging” buffer. On every falling edge of vsync, we

swap the pointers to these buffers, thus allowing for consistent output to the monitor.

An excerpt of this implementation is shown below:

 if (~vsync && old_vga_vsync) begin

 rd_addr_offset <= 27'b0;

 // on falling edge of vsync, swap buffers

3

 staging_buffer_addr <= output_buffer_addr;

 output_buffer_addr <= staging_buffer_addr;

 end

Lastly, ddr3_renderer_top has an FSM to handle DDR3 reads/writes.

Figure 3: FSM Diagram of DDR3 Read Logic

For reference, the vsync signal refers to the falling edge of the actual vsync signal.

Signals w_phy_cmd_empty and w_phy_cmd_full come from the DDR3 command FIFO, as

per the light-weight controller specification. Each DDR3 burst writes 128 bytes,

equivalent to 8 pixels on the screen. Thus, in order to read a full horizontal strip into

the line buffer, we need 80 consecutive DRAM bursts. The StFlush state exists in order

to avoid potential cache read/write requests from executing under the line buffer.

3.2.3 ddr3_arbiter

The ddr3_arbiter.sv module is poorly named–it just instantiates the DDR3 objects as

per the specification of the light-weight DDR3 controller. Furthermore, it connects to

LED[3:0] on the Urbana board, indicating whether DDR3 is enabled/disabled.

4

3.2.4 ddr3_rdcal.v/ddr3_x16_phy_cust.v/ddr3_x16_phy_params.vh

These files are imported from the light-weight DDR3 controller module.

3.2.5 frame_buffer.sv

frame_buffer.sv defines the horizontal line buffer which is displayed to the HDMI

monitor. Internally, it consists of a True Dual Port BRAM instantiated with size 640x1,

with each address defining a 16-bit color space. One port of the BRAM is used to write

data in from ddr3_renderer_top, while the other port is used to display color data to

the VGA to HDMI IP.

In order to read data in from ddr3_renderer_top, there is a (trivial) FSM consisting of

IDLE, ACTIVE, and WAIT states. There is also combinational logic to map the

corresponding 128-bit bursts from DDR3 into locations within BRAM. The following is

an excerpt of that logic:

bram_waddr = bram_addr_base + {7'b0, bram_wr_dbyte_index_q};

for (integer i = 0; i < 8; i = i + 1) begin

 if (bram_wr_dbyte_index_q == i) begin

 bram_dina = bram_dina_burst[i*16 +: 16];

 end

end

3.2.6 cache.sv

The GPU makes frequent DDR3 reads (primarily during the Z-buffer state of the

pipeline), which necessitates the use of caching in order to improve performance.

The cache consists of a single port BRAM, structured into sixteen 512-bit wide cache

lines (32 consecutive values). We could achieve better spatial locality by expanding the

width of our cache lines, but this comes at a cost of increased DDR3 latency, which

could potentially interfere with other aspects of the design.

The cache uses the following FSM in Figure 4:

5

Figure 4: FSM Diagram of Direct-Mapped Cache Logic

We implemented a write-back cache, which writes back to main memory only when a

particular cache line has been modified and a dirty miss occurs at that particular line.

In the event of StEvictWB, the cache writes sequential 128-bit chunks to DDR3, of which

there are four. After everything is written, it begins reading new data into the cache

line.

We have used the transition cache_req for brevity. In our implementation, this signal is

driven by certain control signals within the Z-buffer.

3.2.7 graphics_top.sv

This is the top-level graphics module which instantiates all modules in the graphics

pipeline. Furthermore, it contains a (trivial) FSM to draw a background to VRAM,

after which the rest of the 3D graphics are overlaid on top of it.

3.2.8 gpu_wb_controller.sv

In order to make efficient usage of DDR3, we devised a basic memory coalescing

mechanism within gpu_wb_controller. At a high-level, the write-back controller waits

6

for 8 sequential memory addresses to be written to, after which point it executes one

DDR3 write operation. In the event that the write-back controller receives a memory

address not in the same contiguous area, it flushes the current buffer to DDR3, and

then reads the new value.

The FSM for write-back logic is shown in Figure 5.

Figure 5: FSM Diagram of Write-back Controller Logic

For reference, values din_tag and curr_tag refer to the current address tag of data in,

as well as the values stored within the write-back buffer, respectively. During StRead,

data values are being continuously read in from the rest of the graphics pipeline. This

coalesced buffer is then written to DDR3 in StWriteback and StFlush. In our

implementation, StIdle is the default state, and none of the other states ever transition

back to it.

7

3.2.9 zbuffer.sv

zbuffer.sv implements a Z-buffer, allowing for displaying relative depth within our

graphics pipeline. It takes in alpha, beta, and gamma values from the rasterizer, as well

as the Z-values of the three vertices of the current triangle being rendered. It then uses

the following formula:

𝑍pixel = 𝛼pixel𝑍0 + 𝛽pixel𝑍1 + 𝛾pixel𝑍2 (1)

in order to calculate the Z-value of the current pixel (Barycentric Interpolation). This

calculation is implemented by inferring DSP units on the FPGA:

 tmp0 = $signed(z0) * $signed(alpha);

 tmp1 = $signed(z1) * $signed(beta);

 tmp2 = $signed(z2) * $signed(gamma);

 sum = tmp0 + tmp1 + tmp2;

Note: a potential optimization we could have done to reduce WNS would be to pipeline

this into a explicit multiplication and addition stage, instead of performing the entire

interpolation combinationally.

After calculating the incoming Z-value, it is compared with the current Z-value being

stored in memory (these memory accesses are done through cache). If this Z-value is

smaller (closer to POV), the pixel is replaced (send to the write buffer).

3.2.10 rasterizer.sv

rasterizer.sv is responsible for generating a sequence of pixels which are bounded by the

specified triangle, passed in from the projector module. It also instantiates the

barycentric calculation module, which determines if pixels fall within the specified

triangle, as well as the barycentric coordinates (𝛼, 𝛽, 𝛾)

The rasterizer logic consists of the FSM shown in Figure 6.

8

Figure 6: FSM Diagram of Rasterizer Logic

For reference, StSetup calculates the bounds of the smallest rectangular which fully

contains the specified triangle. These bounds are used to determine when StDraw

transitions to StFlush. StFlush is used to wait for residual values in the address/valid

pipelines to clear, after which it transitions to StDone.

3.2.10.1 barycentric_calc.sv

barycentric_calc.sv is a module instantiated within our rasterizer which calculates

barycentric coordinates for each pixel within the bounding box and determines whether

it is within the specified triangle.

This module first calculates multiple areas using 2D cross products:

Area(𝑃 , 𝐴, 𝐵) = (𝐴𝑥 − 𝑃𝑥)(𝐵𝑦 − 𝑃𝑦) − (𝐴𝑦 − 𝑃𝑦)(𝐵𝑥 − 𝑃𝑥)

Area(𝑃 , 𝐵, 𝐶) = (𝐵𝑥 − 𝑃𝑥)(𝐶𝑦 − 𝑃𝑦) − (𝐵𝑦 − 𝑃𝑦)(𝐶𝑥 − 𝑃𝑥)

Area(𝑃 , 𝐶, 𝐴) = (𝐶𝑥 − 𝑃𝑥)(𝐴𝑦 − 𝑃𝑦) − (𝐶𝑦 − 𝑃𝑦)(𝐴𝑥 − 𝑃𝑥)

(2)

9

The ratio of these areas to the overall inverse area of the triangle 𝐴𝐵𝐶 returns the

barycentric coordinates 𝛼, 𝛽, 𝛾.

In our implementation, we take advantage of the fact that 𝛼 + 𝛽 + 𝛾 = 1 to calculate

𝛾 = 1 − 𝛼 − 𝛽, saving us from using excessive DSP units. This is shown in the excerpt

below:

alpha_o <= r_norm1_6;

beta_o <= r_norm2_6;

gamma_o <= $signed(32'h01000000) - r_norm1_6 - r_norm2_6;

within_tri_7 <= within_tri_6;

FP32 is expensive to implement in FPGAs, so we chose to used fixed-point Q8.24 and

Q16.16 for all calculations, depending on the degree of fractional precision required. In

this excerpt, 32'h01000000 is equal to decimal 1 in Q8.24.

We determine if a point is within the triangle by checking if the sign bit of all three

areas are the same.

Figure 7: Testbench of Barycentric Calculation Module

The above testbench shows the operation of the barycentric_calc module. After a point

in the 640 × 480 screen space is passed to the module, it calculates the 𝛼, 𝛽, ∧ 𝛾 values

in Q16.16, and determines if the pixel is within the triangle. This process is pipelined

with 8 cycles of latency.

3.2.11 projector.sv

projector.sv is responsible for projecting 3D points onto points in the 640x480 2D screen

space. It achieves this projection by applying a specific (sparse) projection matrix, and

then dividing the x, y, and translated z coordinates by z.

10

We configured the divide IP to use the high-radix mode as opposed to radix-2. This

allows significantly less LUT usage, at the cost of significantly increased DSP unit

usage. The observed latency of this IP was around 50 cycles. While this is significantly

longer than the latency of other arithmetic operations, we must consider:

• The bottleneck in our graphics unit is the rasterizer module, as it performs

operations at the order of 𝑂(𝑁𝑀) where 𝑁 and 𝑀 represent the size of the

bounding box.

• This costly division operation needs to be performed at most 3 times for each of the

three vertices of the triangle.

• Our graphics pipeline is clocked at 200Mhz, so the per-triangle latency for division

amounts to at most 1𝜇𝑠.

3.2.11.1 Joint testbench for projector and rasterizer module

Figure 8: Joint testbench for Projector and Rasterizer Module

Above is an example testbench. Projector is fed an array of triangle vertices, which is

converted to 2D and sent to the rasterizer, which generates the respective pixel values.

We can see that around 0.250𝜇𝑠, proj_out_valid is asserted high, indicating that the

output of the projector module is valid. At this point, the rasterizer module reads the

vertex data and begins generating pixel values as seen at time 10.175𝜇𝑠, for example.

This particular testbench generates a ASCII representation of the final image, as seen

below:

11

Figure 9: ASCII output of above testbench. In this case, we draw a cube.

3.2.12 transformation.sv

transformation.sv is responsible for applying a linear transformation to the vertices of a

triangle. This allows for rotations and translations within 3D space, which gets mapped

down to 2D coordinates by projector.sv.

An excerpt of these matrix operations is shown below:

next_opt_x = products[0][0] + products[0][1] + products[0][2] +

$signed({matrix[0][3], 16'b0});

next_opt_y = products[1][0] + products[1][1] + products[1][2] +

$signed({matrix[1][3], 16'b0});

next_opt_z = products[2][0] + products[2][1] + products[2][2] +

$signed({matrix[2][3], 16'b0});

end

As previously mentioned, we use fixed-point Q16.16 instead of FP32, hence the 16-bit

left shifts to convert values to Q16.16.

3.2.13 gpio.sv

gpio.sv instantiates the transformation module, and generates the transformation

matrix which is passed to transformation.sv. It does so by reading data from the GPIO

(this will be further elaborated upon in the software section). This data is then sent to

a Xilinx CORDIC IP to generate cosine/sine values which ar passed into the output

matrix.

The interaction between gpio.sv and transformation.sv is shown below:

transformation transformation_inst (

 .clk(clk),

 .rst(rst),

12

 .t_x(initial_t_x),

 .t_y(initial_t_y),

 .t_z(initial_t_z),

 .color(16'hFFFF),

 .in_valid(out_valid),

 .data_read(data_read),

 .model_matrix('{

 '{ cos, -sin, 10'b0, 10'b0 },

 '{ sin, cos, 10'b0, 10'b0 },

 '{ 10'b0, 10'b0, 10'h100, 10'b0 }

 }),

 .stall(1'b0),

 .out_x(transformed_t_x),

 .out_y(transformed_t_y),

 .out_z(transformed_t_z),

 .color_out(color_out),

 .valid(transform_valid)

);

gpio.sv also has a (trivial) FSM which continually reads values from the CORDIC IP,

passes the data to the transformation module, and then waits for the next set of

vertices to be passed.

3.2.14 model_engine.sv

model_engine.sv is responsible for sending vertex/face data to the rest of the graphics

pipeline. Internally, it instantiates two ROMs vertex_rom and face_rom, each of which

are BRAM arrays holding vertex/face data in a particular format:

Vertex data is stored in BRAM as 96-bit values, holding the Q16.16 (𝑋, 𝑌 , 𝑍) data of

each vertex.

Face data is stored in BRAM as 32-bit values, where bits [31:16] store the color of the

particular triangular face, and bits [15:0] store the addresses of each vertex within the

vertex ROM.

The Vertex and Face ROMs are initialized with their respective .coe file in order to load

the appropriate data.

4 Software

4.1 Description
The software component of the flight simulator is primarily responsible for handling

user inputs, calculating flight dynamics by running an accurate physics simulation, and

communicating the plane’s state to the hardware design for rendering.

13

4.2 User Input
User inputs are handled through USB keyboard communication. Specifically, the Serial

Peripheral Interface (SPI) protocol is used to communicate with the MAX3421E chip on

the FPGA board.

Using this SPI primitive, the MicroBlaze implements a USB driver that performs high-

level USB operations, like listing connected devices, configuring them, and reading data.

This driver is implemented in MAX3421E.c and other files in the lw_usb directory.

Additionally, the MAX3421E chip also connects to some non-SPI pins on the FPGA

board—specifically, the interrupt and reset pins. The complete interface between the

FPGA and MAX3421E chip is shown in Figure 10. The interrupt and reset pins are

both connected into GPIO modules (gpio_usb_int and gpio_usb_rst) in the Vivado

block design, allowing the MicroBlaze to read the interrupt status and control the reset

line via MMIO.

12MHz
Osc. MAX3421 USB Controller

23 8-bit
registers

128 byte Read FIFO

128 byte Write FIFO

USB_MISO

USB_MOSI

USB_CCLK

USB_SS_B

User IP

USB_RESET_B

USB_INT

U12

V15

V14

T12

V13

T13

FPGA

SPI

Figure 10: Connection between the FPGA and MAX3421E chip

The MicroBlaze uses the USB driver to read keyboard inputs from the user every time-

step. Specifically, the keys for controlling the plane are as follows:

• Throttle: Up Arrow (Increase), Down Arrow (Decrease)

• Rudder: Left Arrow (Left), Right Arrow (Right)

• Elevators: W (Pitch Up), S (Pitch Down)

• Ailerons: A (Roll Left), D (Roll Right)

The usb.c file contains the code for reading and processing these keyboard inputs. It

implements the usb_get_inputs function, which parses these key presses into a struct

usb_report data structure containing the current user inputs. The struct definition is as

follows:

#include "xil_types.h"

struct usb_report {

14

 u8 is_throttle_up;

 u8 is_throttle_down;

 u8 is_pitch_up;

 u8 is_pitch_down;

 u8 is_roll_left;

 u8 is_roll_right;

 u8 is_yaw_left;

 u8 is_yaw_right;

};

4.3 Flight Dynamics
A significant portion of the difficulty for this project came from implementing accurate

flight dynamics. At first, we attempted to implement this physics engine in hardware,

but quickly realized that the complexity of the calculations were simply infeasible given

the limited resources on the FPGA board. For example, even simple additions and

subtractions would infer DSP units, which were both limited in number and significant

sources of timing violations. As a result, we decided to implement flight dynamics on

the MicroBlaze processor, allowing us to just send current flight state (position, velocity,

attitude, etc.) to the hardware design for rendering.

4.3.1 Parameters

Before describing the equations we used, it’s important to define the numerous

parameters involved.

• In general, 𝑘 represents a specific constant

• In general, 𝑖 represents the value of a particular input (like throttle or rudder)

• 𝛾, 𝜇, and 𝜒 represent pitch, roll, and yaw angle respectively—these three angles

define the attitude of the aircraft

• 𝐶𝑙 and 𝐶𝑑 are the lift and drag coefficients respectively

• Forces on the aircraft are parameterized as thrust (𝑇), lift (𝐿), and drag (𝐷)

• 𝑣 is the velocity (airspeed) of the aircraft

• 𝑥 and 𝑦 represent an arbitrary (𝑥, 𝑦) position

• ℎ is the altitude above ground

• 𝐴 is the wing area

• 𝜌 is air density

4.3.2 Equations

The primary source for our flight dynamics equations was this textbook section.

First, we derived the following equations for thrust (𝑇), lift (𝐿), and drag (𝐷).

𝑇 = 𝑘𝑇 𝑖throttle (3)

15

https://eng.libretexts.org/Bookshelves/Aerospace_Engineering/Fundamentals_of_Aerospace_Engineering_(Arnedo)/07%3A_Mechanics_of_flight/7.01%3A_Performances/7.1.03%3A_Hypotheses

𝐿 = 1
2
𝜌𝑣2𝐴𝐶𝑙 (4)

𝐷 = 1
2
𝜌𝑣2𝐴𝐶𝑑 (5)

Then, from various resources, we derived the following equations for lift and drag

coefficients for a commercial aircraft.

𝐶𝑙 = 𝑘C0 + 𝑘C1𝛾 (6)

𝐶𝑑 = 𝑘D2𝐶2
𝑙 + 𝑘D0 (7)

We also derived an equation for air density based on altitude.

𝜌 = 1 − (0.6
27600

)ℎ atm

= (1 − (0.6
27600

)ℎ) ∗ 1.225 kg/m3
(8)

Using the equations for forces, we can calculate changes in velocity and attitude over a

small timestep (d𝑡).

d𝑣 = 𝑇 − 𝐷 − 𝑚𝑔 sin 𝛾
𝑚

d𝑡 (9)

d𝜒 = 𝐿 sin 𝜇
𝑚𝑣 cos 𝛾

d𝑡 (10)

d𝛾 = 𝐿 cos 𝜇 − 𝑚𝑔 cos 𝛾
𝑚𝑣

d𝑡 (11)

So, at each timestep, we can integrate the above differentials to update the aircraft’s

airspeed and attitude.

The attitude of the aircraft is also affected by control surface deflections. This is

simplified using the following equations.

d𝛾 = 𝑘pitch𝑖elevator d𝑡 (12)

16

d𝜇 = 𝑘roll𝑖aileron d𝑡 (13)

d𝜒 = 𝑘yaw𝑖rudder d𝑡 (14)

We can account for change in the aircraft’s mass due to fuel consumption. 𝜂 is the fuel

consumption rate (kg/s) per unit thrust.

d𝑚 = −𝑇𝜂 d𝑡 (15)

Finally, we can update the aircraft’s position using the following equations. Note that

these equations update position based on attitude and airspeed, which are in turn

updated using the previous equations based on forces on the aircraft. This reflects

proper physics modeling.

d𝑥 = 𝑣 cos 𝛾 cos 𝜒 d𝑡 (16)

d𝑦 = 𝑣 cos 𝛾 sin 𝜒 d𝑡 (17)

dℎ = 𝑣 sin 𝛾 d𝑡 (18)

All of these equations are either calculated or integrated on the MicroBlaze processor

for each timestep, updating the aircraft’s state accordingly. This code is implemented in

the update_plane_state function in flight_sim.c.

4.3.3 Edge Cases and Constants

To account for some special edge cases, a few additional rules are implemented:

• The aircraft cannot go below ground level (altitude ℎ < 0)

• The aircraft cannot have a negative airspeed (𝑣 < 0)

• If the aircraft is within 5 feet of the ground, it cannot roll or pitch

• Pitch and roll angles are clamped to ±20 degrees to simulate a fly-by-wire system

Finally, research was done to determine reasonable values for the various constants used

in the equations. These values are defined in flight_sim.c as part of the

default_plane_characteristics variable. For sake of conciseness, these values will not

be listed here, but they are described in great detail in the code comments.

17

4.4 Hardware Communication

4.4.1 Communication Protocol

A lot of effort was spent determining an efficient and effective way for the MicroBlaze

processor to communicate the plane’s state to the hardware design. Initially, we

considered using a custom AXI peripheral with a large number of registers, which would

expose these registers as output ports to the hardware design. However, this approach

was abandoned due to the sheer complexity and difficulty with implementing AXI

peripherals and dealing with the IP integrator in Vivado.

Instead, we opted to use eight GPIO modules, each with a 32-bit output data port. This

gave us a total of 256 bits to communicate the plane’s state, which we would need to

pack and write appropriately using memory-mapped I/O (MMIO) operations from the

MicroBlaze.

4.4.2 Data Packing

To begin, we implemented a struct plane_state_export in flight_sim.h, which would

define the specific variables that needed to be “exported” from the massive plane state

structure to the hardware design. The struct definition is as follows:

struct plane_state_export {

 uint32_t status; // bits that convey status info (e.g., ready bit)

 uint32_t latitude;

 uint32_t longitude;

 uint32_t altitude;

 uint16_t airspeed;

 uint16_t pitch;

 uint16_t roll;

 uint16_t yaw;

 uint16_t throttle;

 uint16_t climb_rate;

};

Appropriate integer sizes were chosen for each variable to ensure sufficient precision

while minimizing bit usage. For example, latitude and longitude are represented as 32-

bit integers in microdegrees, allowing for precise positioning without floating-point

representation.

Another key design decision was to use 4-bit segments of the integer values to represent

a base-10 number. For example, typically, an airspeed of 123 knots would be represented

as 0x007B in hexadecimal, which would then be sent to the hardware design. However,

we instead chose to represent this as 0x0123, where each 4-bit segment corresponds to a

single decimal digit. The reasoning for this decision was to simplify the hardware design

and allow it to use less resources. Specifically, we considered the situation where the

hardware design would need to display the text of the airspeed value on the screen. In

18

this situation, being able to look up every 4-bit segment in a small ROM would be

much simpler and more resource-efficient than implementing a full binary-to-decimal

conversion in hardware.

With this encoding scheme defined, we then defined the specific encoding scheme for

each variable in the plane_state_export struct. For example, the airspeed variable was

chosen to be represented as ###.#, meaning up to three decimal digits before the

decimal point and one digit after would be sent to the hardware design. Thus, an

airspeed of 123.4 knots would be represented as 0x1234. Similar encoding schemes were

defined for the other exported variables.

4.4.3 Memory-Mapped I/O

To then send this packed data to the hardware design, we implemented memory-

mapped I/O (MMIO) operations in the gpio.c and gpio.h files.

To allow for easy operations, we defined structs that represented the registers of each

GPIO peripheral. For example, one such struct is defined as follows:

struct gpio1_regs {

 union {

 struct __attribute__((packed)) {

 uint16_t airspeed;

 uint16_t pitch;

 };

 uint8_t raw[4];

 };

};

Such a struct definition allows us to easily write to the airspeed and pitch data values,

while also allowing us to access the raw bytes stored in the GPIO peripheral’s data

register.

Using these struct definitions, we then implemented proper memory-mapped I/O using

volatile pointers to the base addresses of each GPIO peripheral. For example, one such

pointer is defined as follows:

#include "xparameters.h"

#define GPIO1 (*(volatile struct gpio1_regs*)(XPAR_GPIO_DATA_1_BASEADDR))

This setup essentially allows very simple and straightforward GPIO operations. For

example, to set the airspeed and pitch values in GPIO, we can simply do the following:

GPIO1.airspeed = export_state->airspeed;

GPIO1.pitch = export_state->pitch;

19

This code is implemented in the write_plane_export_to_gpio function in gpio.c, which

is called every timestep to update the GPIO peripherals with the latest plane state

(after it is packed into the plane_state_export struct).

4.5 Main Loop
Putting it all together, the main loop of the MicroBlaze software is implemented in

main.c. The code for the main loop is as follows:

while (TRUE) {

 // Populate USB report

 u8 rcode = usb_get_inputs(&report);

 // Update plane state based on USB report

 float time_step = 0.1f;

 update_plane_state(&plane, &report, time_step);

 // Export plane state to plane_state_export struct

 export_plane_state(&plane, &plane_export);

 // Write exported state to GPIO MMIO

 write_plane_export_to_gpio(&plane_export);

}

This loop combines all the components described previously, reading user inputs,

updating flight dynamics, packing the plane state, and writing it to GPIO for the

hardware design to render.

4.6 Vivado Block Design
To support the features described above, the MicroBlaze and required peripherals were

implemented in a Vivado block design. The complete block design is shown in

Figure 11.

20

Figure 11: Vivado Block Design

4.7 Summary of Block Design Components

4.7.1 Clocking Wizard

The clocking wizard generates arbitrary clock frequencies using a PLL. The block design

clocking wizard is redundant in this design, since the block design just needs a single

100MHz clock, which is already provided by the RealDigital Urbana board. However, we

kept it in the design for potential future use.

4.7.2 MicroBlaze Processor

The MicroBlaze is a 32-bit RISC processor designed by AMD for Xilinx FPGAs. It’s a

soft-core processor, meaning it can be fully implemented using the programmable logic

resources of the FPGA. It uses the AXI Interface as an I/O bus, allowing it to

communicate with various peripherals and memory components within the FPGA

design. It also supports local memory (LMB), JTAG-based debugging through the

MicroBlaze Debug Module (MDM), and interrupt handling through the AXI Interrupt

Controller.

4.7.3 MicroBlaze Debug Module (MDM)

The MicroBlaze Debug Module (MDM) is a dedicated hardware block that provides

debugging capabilities for the MicroBlaze. For example, it allows for setting breakpoints

in code, stepping through lines of code, and other standard debugging features—all

21

while the code runs on the MicroBlaze processor within the FPGA. It interfaces with

the MicroBlaze via a dedicated debug interface, and connects to the JTAG port on the

FPGA board for communication with external debugging tools. Specifically, the “PROG

UART” port on the RealDigital Urbana board, which is normally used for programming

the FPGA, is also used for this JTAG communication.

4.7.4 MicroBlaze Local Memory

The MicroBlaze Local Memory is a small, fast memory block that is directly connected

to the MicroBlaze processor. It implements the Local Memory Bus (LMB) interface,

which is a simple, low-latency bus designed for high-speed access to memory. This local

memory is typically used for storing instructions, which are very frequently accessed. In

our design, we configured the local memory to be 128KB in size.

4.7.5 AXI Interconnect

The AXI Interconnect facilitates communication between the MicroBlaze processor and

various AXI peripherals in the design. It uses the AXI protocol, with the MicroBlaze

acting as the master and the peripherals as slaves. It also handles properly routing

transactions to the correct peripheral based on the address being accessed. In our

design, the AXI Interconnect connects the MicroBlaze to nine peripherals: the AXI

Interrupt Controller, AXI Uartlite, AXI Timer, two GPIO modules for USB

communication, and four GPIO modules for plane state transfer to the hardware design.

4.7.6 AXI Interrupt Controller

The AXI Interrupt Controller manages interrupt signals from various peripherals and

forwards them to the MicroBlaze processor. It’s very similar to the Platform-Level

Interrupt Controller (PLIC) used in RISC-V systems. It supports interrupt priorities,

enabling/disabling interrupts, and claiming/acknowledging interrupts from the

MicroBlaze. In our design, it connects to four interrupt sources: the AXI Uartlite, AXI

Timer, AXI Quad SPI, and AXI GPIO module used for USB interrupts.

4.7.7 Processor System Reset

The Processor System Reset module generates reset signals for the MicroBlaze

processor and other components in the design. It ensures that all components are reset

on power on, and also ensures that resets are properly synchronized with the system

clock. In our design, it generates reset signals for the MicroBlaze, AXI Interconnect,

AXI Interrupt Controller, and all the AXI peripherals.

4.7.8 AXI Timer

The AXI timer allows the MicroBlaze to keep track of time by creating programmable

interrupt timers, which can be configured by the MicroBlaze via AXI. This is useful

because it allows the MicroBlaze to perform time-based operations, such as polling the

USB device at regular intervals (as done in our design).

22

4.7.9 AXI Uartlite

The AXI Uartlite module allows the Microblaze to send and receive data using the

UART protocol. In our design, we use this module to allow the MicroBlaze to print

messages to a serial console, which get sent through the “PROG UART” port on the

RealDigital Urbana board. On the host computer, we can use a serial terminal (like the

screen command, or the integrated debug console in Vitis) to view these messages.

4.7.10 AXI Quad SPI

The AXI Quad SPI module allows the MicroBlaze to communicate with SPI devices

using the SPI protocol. In our design, we use this module to communicate with the

MAX3421E USB controller chip.

4.7.11 AXI GPIO Modules

The AXI GPIO modules allow the MicroBlaze to interact with general-purpose input/

output (GPIO) pins on the FPGA board using memory-mapped I/O. In our design, we

use two AXI GPIO modules for USB communication: one for reading USB interrupts

from the MAX3421E chip, and one for controlling the reset line of the MAX3421E chip.

Additionally, we use four AXI GPIO modules for transferring the plane state from the

MicroBlaze to the hardware design for rendering.

4.8 Summary of Program Files

4.8.1 main.c

This file contains the main loop of the MicroBlaze software, which continuously reads

user inputs, updates flight dynamics, packs the plane state, and writes it to GPIO for

the hardware design to render.

4.8.2 usb.h

This header file defines the usb_report struct, which represents user inputs from the

USB keyboard.

4.8.3 usb.c

This file implements USB communication using the MAX3421E chip. It contains the

usb_get_inputs function, which reads keyboard inputs and populates a usb_report

struct. It also deals with USB setup and configuration.

4.8.4 flight_sim.h

This header file defines three main structs: plane_characteristics, which defines the

physical characteristics of the aircraft; plane_state, which defines the current state of

the aircraft; and plane_state_export, which defines the subset of the plane state that is

exported to the hardware design.

23

4.8.5 flight_sim.c

This file first instantiates a plane_characteristics variable with reasonable values for a

commercial aircraft. It then implements the init_plane_state and update_plane_state

functions, which update the plane state based on user inputs and flight dynamics

equations. It also implements the export_plane_state function, which packs the plane

state into a plane_state_export struct for GPIO transfer.

Some helper functions used in this file include d_sin and d_cos, which compute the sine

and cosine of an angle in degrees, and get_nth_digit and get_nth_digit_d, which

extract specific decimal digits from floats and doubles.

4.8.6 gpio.h

This header file defines structs representing the registers of each GPIO peripheral used

in the design. It also defines volatile pointers to the base addresses of each GPIO

peripheral for memory-mapped I/O.

4.8.7 gpio.c

This file implements the write_plane_export_to_gpio function, which writes the packed

plane state from a plane_state_export struct to the appropriate GPIO peripherals

using memory-mapped I/O.

4.8.8 Other Miscellaneous Files

platform.h, platform.c, and platform_config.h are standard files generated by Vitis for

setting up the MicroBlaze platform. They handle low-level initialization of the processor

and peripherals.

All files within the lw_usb directory implement a lightweight USB stack for the

MicroBlaze, including low-level USB operations and the MAX3421E driver. These files

are used in usb.c to handle USB communication.

5 FPGA Implementation

5.1 RTL Block Diagram
Figure 12 shows the RTL block diagram of the FPGA implementation.

24

Figure 12: RTL Block Diagram, with the DDR3 renderer module shown in the center

5.2 Design Analysis
Table 1 shows design analysis results for the FPGA implementation.

25

Utilization

Look-Up Tables (LUTs) 7096 / 32600 (21.77%)

Digital Signal Processing Units (DSPs) 71 / 120 (59.17%)

Memory (BRAM) 37.5 / 75 (50%)

Memory (LUTRAM) 500 / 9600 (5.21%)

Latches 0

Flip-Flops (FFs) 7493 / 65200 (11.49%)

Input/Output (IO) 88 / 210 (41.9%)

Mixed-Mode Clock Managers (MMCMs) 3 / 5 (60%)

Timing

Worst Negative Slack (WNS) −3.234 ns

Max Frequency 75.563 MHz

Power

Static Power 0.077 W

Dynamic Power 0.953 W

Total Power 1.03 W

Table 1: Design analysis results

6 Conclusion
Our expectation coming into this project was to get a fully functional flight simulator

with 3D graphics, full controls, and potential dynamic terrain generation. However, we

were not able to accomplish a lot of these (ambitious) goals. This is partially due to

certain design decisions made which added unnecessary complexity to the system, and

made integration of the software and hardware components difficult. In retrospect, our

decision to use DDR3, while theoretically efficient, forced us to implement a lot of

supplementary logic such as caches and DRAM arbiters in order to make the overall

system performant. The instrinsic complexity of our system alongside limited time due

to other challenging classes made finishing this project in its entirety rather unrealistic.

There are several design decisions which, in retrospect, could have simplified the system

significantly.

• Quantizing Z-values - Because our 3D model doesn’t move in the Z-direction

significantly in the flight simulator, we can quantize these values to a small range

(potentially 4-bit). With a significantly reduced Z-value size, we can store the

entirety of the Z-buffer within a large BRAM instance. With the Z-buffer stored

entirely in BRAM, we forgo the direct mapped cache and its associated logic within

ddr3_renderer_top.

26

• AXI - We decided to transmit data through GPIO, rather than an established

communication interface like AXI/AXI-Lite. In hindsight, integration of our

hardware and software component could have been significantly easier with AXI

handshaking (rather than relying on GPIO, which we found to be rather unreliable)

• Color Space Reduction - By reducing the color space from 16-bit RGB565 to 8-

bit, we can have a higher pixel throughput (as our memory subsystem can now store

twice the pixels as before).

Thus, there is a lot of work that can be done to extend the functionality of this project,

like adding some of the features which we weren’t able to implement. Luckily, there is a

lot of physical space on our FPGA for these features–we ended up using 21.77% of the

LUTs, and 11.49% of the FFs. This can be attributed to many optimizations and our

decision to use light-weight memory controllers rather than LUT-intensive Xilinx IPs.

However, we did use a significant amount of DSP units (59.17%), which limits the

amount of arithmetic-intensive units we can potentially add to the design.

Overall, we found this project to be very rewarding (albeit stressful). We had extremely

complex hardware and software components, and we put a lot of work into writing

(numerous) FSMs, memory controllers, and graphics architectures. There was also a

significant debugging component to our project–especially considering the number of

moving parts. We would have to unit test each module, and then write larger

testbenches to test overall system functionality.

Lastly, rather than following a prexisting design, this project had us making a lot of

independent design decisions. We firmly believe our experiences making these design

decisions (some good, some awful in retrospect) will be incredibly beneficial in our

future endeavours in digital hardware design.

6.1 AI Usage
We used LLM tools to generate testbenches and templates for testbenches, which were

used to debug various HDL components of our project.

Our LLM of choice was Google’s Gemini Pro.

6.2 References
https://alchitry.com/tutorials/projects/gpu/

https://github.com/someone755/ddr3-controller

https://github.com/kooltzh/xilinx-coe-generator/tree/master

https://www.cs.utexas.edu/~fussell/courses/cs384g-fall2013/lectures/lecture20-Z_

buffer_pipeline.pdf

https://github.com/sylefeb/tinygpus

27

https://alchitry.com/tutorials/projects/gpu/
https://github.com/someone755/ddr3-controller
https://github.com/kooltzh/xilinx-coe-generator/tree/master
https://www.cs.utexas.edu/~fussell/courses/cs384g-fall2013/lectures/lecture20-Z_buffer_pipeline.pdf
https://www.cs.utexas.edu/~fussell/courses/cs384g-fall2013/lectures/lecture20-Z_buffer_pipeline.pdf
https://github.com/sylefeb/tinygpus

	1 Introduction
	1.1 (Brief) Description of Operation

	2 Proposed High Level Block Diagram
	3 Hardware
	3.1 Description
	3.2 Module Descriptions
	3.2.1 flight_sim_top.sv
	3.2.2 ddr_renderer_top.sv
	3.2.3 ddr3_arbiter
	3.2.4 ddr3_rdcal.v/ddr3_x16_phy_cust.v/ddr3_x16_phy_params.vh
	3.2.5 frame_buffer.sv
	3.2.6 cache.sv
	3.2.7 graphics_top.sv
	3.2.8 gpu_wb_controller.sv
	3.2.9 zbuffer.sv
	3.2.10 rasterizer.sv
	3.2.10.1 barycentric_calc.sv

	3.2.11 projector.sv
	3.2.11.1 Joint testbench for projector and rasterizer module

	3.2.12 transformation.sv
	3.2.13 gpio.sv
	3.2.14 model_engine.sv

	4 Software
	4.1 Description
	4.2 User Input
	4.3 Flight Dynamics
	4.3.1 Parameters
	4.3.2 Equations
	4.3.3 Edge Cases and Constants

	4.4 Hardware Communication
	4.4.1 Communication Protocol
	4.4.2 Data Packing
	4.4.3 Memory-Mapped I/O

	4.5 Main Loop
	4.6 Vivado Block Design
	4.7 Summary of Block Design Components
	4.7.1 Clocking Wizard
	4.7.2 MicroBlaze Processor
	4.7.3 MicroBlaze Debug Module (MDM)
	4.7.4 MicroBlaze Local Memory
	4.7.5 AXI Interconnect
	4.7.6 AXI Interrupt Controller
	4.7.7 Processor System Reset
	4.7.8 AXI Timer
	4.7.9 AXI Uartlite
	4.7.10 AXI Quad SPI
	4.7.11 AXI GPIO Modules

	4.8 Summary of Program Files
	4.8.1 main.c
	4.8.2 usb.h
	4.8.3 usb.c
	4.8.4 flight_sim.h
	4.8.5 flight_sim.c
	4.8.6 gpio.h
	4.8.7 gpio.c
	4.8.8 Other Miscellaneous Files

	5 FPGA Implementation
	5.1 RTL Block Diagram
	5.2 Design Analysis

	6 Conclusion
	6.1 AI Usage
	6.2 References

